

Lecture Notes in Computer Science 3671
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stéphane Bressan Stefano Ceri
Ela Hunt Zachary G. Ives
Zohra Bellahsène Michael Rys
Rainer Unland (Eds.)

Database and
XML Technologies

Third International XML Database Symposium, XSym 2005
Trondheim, Norway, August 28-29, 2005
Proceedings

13

Volume Editors

Stéphane Bressan
National University of Singapore, Department of Computer Science
School of Computing
3 Science drive 2, 117543 Singapore, Republic of Singapore
E-mail: steph@nus.edu.sg

Stefano Ceri
Politecnico di Milano, Dipartimento di Elettronica e Informazione
Via Ponzio, 34/5, 20133 Milano, Italy
E-mail: ceri@elet.polimi.it

Ela Hunt
University of Glasgow, Department of Computing Science
Lilybank Gardens 8-17, Glasgow G12 8QQ, UK
E-mail: ela@dcs.gla.ac.uk

Zachary G. Ives
University of Pennsylvania, Computer and Information Science Department
3330 Walnut Street, Philadelphia, PA 19104-6389, USA
E-mail: zives@atcis.upenn.edu

Zohra Bellahsène
LIRMM UMR 5506 CNRS/Université Montpellier II
161 Rue Ada, 34392 Montpellier, France
E-mail: bella@lirmm.fr

Michael Rys
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA
E-mail: mrys@mircosoft.com

Rainer Unland
University of Duisburg-Essen
Institute for Computer Science and Business Information Systems
Schützenbahn 70, 45117 Essen, Germany
E-mail: UnlandR@informatik.uni-essen.de
Library of Congress Control Number: 2005931472
CR Subject Classification (1998): H.2, H.3, H.4, C.2.4

ISSN 0302-9743
ISBN-10 3-540-28583-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28583-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany
Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11547273 06/3142 5 4 3 2 1 0

Preface

This year marks an exciting time in the XML-database space: XQuery is moving
closer to becoming a full W3C Recommendation, and the “Big 3” database
vendors (IBM, Oracle, Microsoft) are expected to release XQuery support in
their relational DBMSs, joining a number of existing open source and commercial
products. Thus, we are very pleased to feature an industrial paper (describing
the XML-specific features of Microsoft SQL Server) as well as 14 research papers.
XSym’s focus this year was on building XML repositories, and papers discussed
the following topics: indexing support for the evaluation of XPath and XQuery;
benchmarks and algorithms for XQuery and XPath evaluation; algorithms for
constraint satisfaction checking, information extraction, and subtree matching;
and applications of XML in information systems.

This year, XSym also coordinated its efforts with the Database and Pro-
gramming Languages Symposium, DBPL 2005. The resulting program included
not only presentations of the papers in this proceedings, but also a joint DBPL-
XSym keynote talk by Giuseppe Castagna, developer of the CDuce language
for XML processing, and a joint panel on open XML research problems and
challenges.

The organizers would like to express their gratitude to the XSym Program
Committee and external reviewers for their efforts in providing very thorough
evaluations of the submitted papers under significant time constraints and to Mi-
crosoft for their sponsorship and for the use of the Microsoft Conference Manage-
ment Toolkit. We would also like to thank Gavin Bierman and Christoph Koch,
the organizers of DBPL, for their efforts and their willingness to coordinate with
us.

These proceedings are dedicated to Alberto Mendelzon who sadly passed
away this year. As a strong supporter of and active contributor to this symposium
series he will always remain in our memory.

Singapore, Milan, Montpellier, Glasgow Stéphane Bressan
Philadelphia, Essen, Redmond Stefano Ceri

Zohra Bellahsene
July 2005 Ela Hunt

Zachary Ives
Rainer Unland

Michael Rys

General Chair

Stéphane Bressan, National University of Singapore (Singapore)

General Co-chair

Stefano Ceri, Politecnico di Milano (Italy)

Organizing Chair

Zohra Bellahsene, LIRMM (France)

Program Committee Chairs

Ela Hunt, University of Glasgow (UK)
Zachary Ives, University of Pennsylvania (USA)

Proceedings

Rainer Unland, University of Duisburg-Essen (Germany)

Sponsorship

Michael Rys, Microsoft (USA)

Communications

Akmal B. Chaudhri, IBM ISV & Developer Relations (USA)

Organization VII

International Programme Committee

Ashraf Aboulnaga, University of Waterloo (Canada)
Sihem Amer-Yahia, AT&T Research (USA)
Ricardo Baeza-Yates, Universidad de Chile (Chile)
Veronique Benzaken, LRI – Université Paris XI (France)
Tiziana Catarci, University of Roma “La Sapienza” (Italy)
Yi Chen, University of Pennsylvania (USA)
Giovanna Guerrini, Università di Pisa (Italy)
Ashish Kumar Gupta, University of Washington (USA)
Raghav Kaushik, Microsoft Research (USA)
Qiong Luo, Hong Kong University of Science and Technology (China)
Ioana Manolescu, INRIA (France)
Peter McBrien, Imperial College London (UK)
Guido Moerkotte, University of Mannheim (Germany)
Felix Naumann, Humboldt University Berlin (Germany)
Werner Nutt, Heriot-Watt University (UK)
Beng Chin Ooi, National University of Singapore (Singapore)
M. Tamer Ozsu, University of Waterloo (Canada)
Tadeusz Pankowski, Poznan University of Technology (Poland)
Alexandra Poulovassilis, Birkbeck College, University of London (UK)
Prakash Ramanan, Wichita State University (USA)
Elke A. Rundensteiner, Worcester Polytechnic Institute (USA)
Arnaud Sahuguet, Bell Laboratories – Lucent Technologies (USA)
Monica Scannapieco, University of Roma “La Sapienza” (Italy)
Jayavel Shanmugasundaram, Cornell University (USA)
Jerome Simeon, IBM Research (USA)
Wang-Chiew Tan, University of California, Santa Cruz (USA)
Yannis Velegrakis, AT&T Research (USA)
Stratis Viglas, University of Edinburgh (UK)
Peter Wood, Birkbeck College, University of London (UK)
Yuqing Melanie Wu, Indiana University (USA)
Jun Yang, Duke University (USA)
Jeffrey Xu Yu, Chinese University of Hong Kong (China)

VIII Organization

External Reviewers

Andrei Arion LRI – Université Paris XI (France)
Patrick Bosc LRI – Université Paris XI (France)
Chavdar Botev Cornell University (USA)
Giuseppe Castagna LRI – Université Paris XI (France)
Laura Chiticariu University of California, Santa Cruz (USA)
David DeHaan University of Waterloo (Canada)
Maged El-Sayed Worcester Polytechnic Institute (USA)
Fan Yang Cornell University (USA)
Mirian Halfeld-Ferrari LRI – Université Paris XI (France)
Ming Jiang Worcester Polytechnic Institute (USA)
Ming Lee Worcester Polytechnic Institute (USA)
Diego Milano University of Roma (Italy)

University of Edinburgh (UK)
Feng Shao Cornell University (USA)
Frank Tompa University of Waterloo (Canada)
Song Wang Worcester Polytechnic Institute (USA)
Rui Yang National University of Singapore (Singapore)
Ning Zhang University of Waterloo (Canada)

Table of Contents

Invited Talk (Shared with DBPL)

Patterns and Types for Querying XML Documents . 1
Giuseppe Castagna

Constraints and Views

Checking Functional Dependency Satisfaction in XML 4
Millist W. Vincent and Jixue Liu

A Theoretic Framework for Answering XPath Queries Using Views 18
Jian Tang and Shuigeng Zhou

Labeling and Path Evaluation

A Path-Based Labeling Scheme for Efficient Structural Join 34
Hanyu Li, Mong Li Lee, and Wynne Hsu

The BIRD Numbering Scheme for XML and Tree Databases –
Deciding and Reconstructing Tree Relations
Using Efficient Arithmetic Operations . 49

Felix Weigel, Klaus U. Schulz, and Holger Meuss

Efficient Handling of Positional Predicates
Within XML Query Processing . 68

Zografoula Vagena, Nick Koudas, Divesh Srivastava,
and Vassilis J. Tsotras

Indexing

Relational Index Support for XPath Axes . 84
Leo Yuen and Chung Keung Poon

Supporting XPath Axes with Relational Databases Using a Proxy Index . . 99
Olli Luoma

An Extended Preorder Index for Optimising XPath Expressions 114
Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

Benchmarking and Query Processing

XPathMark: An XPath Benchmark for the XMark Generated Data 129
Massimo Franceschet

X Table of Contents

MemBeR: A Micro-benchmark Repository for XQuery 144
Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

Main Memory Implementations for Binary Grouping 162
Norman May and Guido Moerkotte

Documents and Biometrical Applications

Logic Wrappers and XSLT Transformations
for Tuples Extraction from HTML . 177

Costin Bădică and Amelia Bădică

Approximate Subtree Identification
in Heterogeneous XML Documents Collections . 192

Ismael Sanz, Marco Mesiti, Giovanna Guerrini,
and Rafael Berlanga Llavori

A Framework for XML-Based Integration of Data, Visualization
and Analysis in a Biomedical Domain . 207

Nathan Bales, James Brinkley, E. Sally Lee, Shobhit Mathur,
Christopher Re, and Dan Suciu

Industrial Session

Optimizing Runtime XML Processing in Relational Databases 222
Eugene Kogan, Gideon Schaller, Michael Rys, Hanh Huynh Huu,
and Babu Krishnaswamy

Panel (Together with DBPL)

Panel: “Whither XML, ca. 2005?” . 237

Author Index . 239

Patterns and Types for Querying XML Documents �

Giuseppe Castagna

CNRS, École Normale Supérieure de Paris, France

In order to manipulate XML data, a programming or query language should provide
some primitives to deconstruct them, in particular to pinpoint and capture some subparts
of the data.

Among various proposals for primitives for deconstructing XML data, two different
and complementary approaches seem to clearly stem from practise: path expressions
(usually XPath paths [7], but also the “dot” navigation of Cω [3]) and regular expression
patterns [13].

Path expressions are navigational primitives that point out where to capture data
substructures. They (and those of Cω, in particular) closely resemble the homonymous
primitives used by OQL [9] in the contexts of OODB query languages with the dif-
ference that instead of sets of objects they return sets or sequences of elements: more
precisely all elements that can be reached following the path at issue. These primitives
are at the basis of standard languages such as XSLT [8] or XQuery [4].

More recently, a new kind of deconstructing primitives was proposed, regular ex-
pression patterns [13], which extend by regular expressions the pattern matching primi-
tive as popularised by functional languages such as ML and Haskell. Regular expression
patterns were first introduced in the XDuce [12] programming language and are becom-
ing more and more popular, since they are being adopted by such quite different lan-
guages as CDuce [1] (a general purpose extension of the XDuce language) and its query
language CQL [2], Xtatic [10] (an extension of C#), Scala [15] (a general purpose Java-
like object-oriented language that compiles into Java bytecode), XHaskell [14] as well
as the extension of Haskell proposed in [5].

The two kinds of primitives are not antagonists, but rather orthogonal and comple-
mentary. Path expressions implement a “vertical” exploration of data as they capture
elements that may be at different depths, while patterns perform a “horizontal” explo-
ration of data since they are able to perform finer grained decomposition on sequences
of elements. The two kinds of primitives are quite useful and they mutually comple-
ment nicely. Therefore, it would seem natural to integrate both of them in a query or
programming language for XML. Despite of that, we are aware of just two works in
which both primitives are embedded (and, yet, loosely coupled): in CQL it is possible
to write select-from-where expressions, where regular expression patterns are applied
in the from clause to sequences that are returned by XPath-like expressions; Gapeyev
and Pierce [11] show how it is possible to use regular expression patterns with an all
match semantics to encode a subset of XPath and plan to use this encoding to add XPath
to the Xtatic programming language.

The reason for the lack of study of the integration of these two primitives may be
due to the fact that each of them is adopted by a different community: regular patterns

� Joint talk with DBPL 2005. Full version available in the Proc. of the 10th Intl. Symp. on
Database Programming Languages, G. Bierman and C. Koch eds., LNCS, Springer, 2005.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 1–3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Giuseppe Castagna

are almost confined to the programming language community while XPath expressions
are pervasive in the database community.

The goal of this lecture is to give a brief presentation of the regular pattern expres-
sions style together with the type system to which they are tightly connected, that is
the semantic subtyping based type systems [6]. We are not promoting the use of these
to the detriment of path expressions, since we think that the two approaches should be
integrated in the same language and we see in that a great opportunity of collaboration
between the database and the programming languages communities. Since the author
belongs to latter, this lecture tries to describe the pattern approach addressing some
points that should be of interest to the database community as well. In particular, after
a general overview of regular expression patterns and types in which we show how to
embed patterns in a select˙̇from˙̇where expression, we discuss several usages of these
patterns/types, going from the classic use for partial correctness and schema specifica-
tion to the definition of new data iterators, from the specification of efficient run-time
to the definition of logical pattern-specific query optimisations.

References

1. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general purpose lan-
guage. In ICFP ’03, 8th ACM International Conference on Functional Programming, pages
51–63, Uppsala, Sweden, 2003. ACM Press.

2. V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for XML query
processing. In PADL 05, 7th International Symposium on Practical Aspects of Declarative
Languages, number 3350 in LNCS, pages 235–252. Springer, January 2005.

3. Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data access in Cw. In
Proc. of ECOOP ’2005, European Conference on Object-Oriented Programming, volume
3586 of Lecture Notes in Computer Science. Springer, 2005.

4. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu.
XQuery 1.0: An XML Query Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, May 2003.

5. Niklas Broberg, Andreas Farre, and Josef Svenningsson. Regular expression patterns. In
ICFP ’04: Proceedings of the ninth ACM SIGPLAN international conference on Functional
programming, pages 67–78, New York, NY, USA, 2004. ACM Press.

6. G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In Proceedings of
PPDP ’05, the 7th ACM SIGPLAN International Symposium on Principles and Practice
of Declarative Programming, ACM Press (full paper) and ICALP ’05, 32nd International
Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
n. 3580, Springer (short abstract), Lisboa, Portugal, 2005. Joint ICALP-PPDP keynote talk.

7. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
http://www.w3.org/TR/xpath/, November 1999.

8. James Clark. XSL Transformations (XSLT). W3C Recommendation,
http://www.w3.org/TR/xslt/, November 1999.

9. Sophie Cluet. Designing OQL: allowing objects to be queried. Inf. Syst., 23(5):279–305,
1998.

10. Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In European Conference on
Object-Oriented Programming (ECOOP), Darmstadt, Germany, 2003. A preliminary ver-
sion was presented at FOOL ’03.

Patterns and Types for Querying XML Documents 3

11. Vladimir Gapeyev and Benjamin C. Pierce. Paths into patterns. Technical Report MS-CIS-
04-25, University of Pennsylvania, October 2004.

12. Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing language. In Pro-
ceedings of Third International Workshop on the Web and Databases (WebDB2000), 2000.

13. Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for XML. In
The 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 2001.

14. K. Zhuo Ming Lu and M. Sulzmann. An implementation of subtyping among regular ex-
pression types. In Proc. of APLAS’04, volume 3302 of LNCS, pages 57–73. Springer-Verlag,
2004.

15. Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An
overview of the scala programming language. Technical Report IC/2004/64, École Poly-
technique Fédérale de Lausanne, 2004. Latest version at http://scala.epfl.ch.

Checking Functional Dependency Satisfaction
in XML

Millist W. Vincent and Jixue Liu

School of Computer and Information Science
University of South Australia

{millist.vincent,jixue.liu}@unisa.edu.au

Abstract. Recently, the issue of functional dependencies in XML
(XFDs) have been investigated. In this paper we consider the problem of
checking the satisfaction of an XFD in an XML document. We present
an efficient algorithm for the problem that is linear in the size of the
XML document and linear in the number of XFDs to be checked. Also,
our technique can be easily extended to efficiently incrementally check
XFD satisfaction.

1 Introduction

The eXtensible Markup Language (XML) [5] has recently emerged as a stan-
dard for data representation and interchange on the Internet. While providing
syntactic flexibility, XML provides little semantic content and as a result several
papers have addressed the topic of how to improve the semantic expressiveness of
XML. Among the most important of these approaches has been that of defining
integrity constraints in XML [7]. Several different classes of integrity constraints
for XML have been defined including key constraints [6], path constraints [8],
and inclusion constraints [10, 11] and properties such as axiomatization and sat-
isfiability have been investigated for these constraints. However, one topic that
has been identified as an open problem in XML research [16] and which has
been little investigated is how to extend the oldest and most well studied in-
tegrity constraint in relational databases, namely a functional dependency (FD),
to XML and then how to develop a normalization theory for XML. This problem
is not of just theoretical interest. The theory of FDs and normalization forms
the cornerstone of practical relational database design and the development of a
similar theory for XML will similarly lay the foundation for understanding how
to design XML documents.

Recently, two approaches have been given for defining functional dependen-
cies in XML (called XFDs). The first [1–3], proposed a definition based on the
notion of a ‘tree tuple’ which in turn is based on the total unnesting of a relation
[4]. More recently, we have proposed an alternative ‘closest node’ definition [14],
which is based on paths and path instances that has similarity with the approach
in [6] to defining keys in XML. This relationship between keys as defined in [6]
and XFDs as defined in [14] extends further, as it was shown in [14] that in the

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 4–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Checking Functional Dependency Satisfaction in XML 5

case of simple paths, keys in XML are a special case of XFDs in the same way
that keys in relational databases are a special case of FDs.

In general, the two approaches to defining XFDs are not comparable since
they treat missing information in the XML document differently and the ap-
proach in [1–3] assumes the existence of a DTD whereas the approach in [14]
does not. Howevever, we have recently shown that [15], in spite of the very differ-
ent approaches used in [1–3] and [14], the two aproaches coincide for a large class
of XML documents. In particular, we have shown that the definitions coincide
for XML documents with no missing information conforming to a nonrecursve,
disjunction free DTD. This class includes XML documents derived from com-
plete relational databases using any ‘non pathological’ mapping. It has also been
shown that in this situation, for mappings from a relation to an XML document
defined by first mapping to a nested relation via an arbitrary sequence of nest
and unnest operations, then followed my a direct mapping to XML, FDs in re-
lations map to XFDs in XML. Hence there is a natural correspondence between
FDs and XFDs.

In this paper we address the problem of developing an efficient algorithm for
checking whether an XML document satisfies a set of XFDs as defined in [14].
We develop an algorithm which requires only one pass of the XML document
and whose running time is linear in the size of the XML document and linear
in the size of the number of XFDs. The algorithm uses an innovative method
based on a multi level extension of extendible hashing. We also investigate the
effect of the size on the number of paths on the l.h.s. of the XFD and show that
the running time is both linear in the number of paths and also increases quite
slowly with the number of paths.

Although the issue of developing checking the satisfaction of ‘tree tuple’
XFDs was not addressed in [1–3], testing satisfaction using the definitions in
[1–3] directly is likely to be quite expensive. This is because there are three
steps involved in the approach of [1–3]. The first is to generate a set of tuples
from the total unnesting of an XML document. This set is likely to be much
larger than the original XML document since unnesting generates all possible
combinations amongst elements. The second step is to generate the set of tree
tuples, since not all tuples generated from the total unnesting are ‘tree tuples’.
This is done by generating a special XML tree (document) from a tuple and
checking if the document so generated is subsumed by the original XML tree
(document). Once again this is likely to be an expensive procedure since it may
require that the number of times the XML document is scanned is the same as
the number of tuples in the total unnesting. In contrast, our method requires
only one scan of the XML document. Finally, the definition in [1–3] requires
scanning the set of tree tuples to check for satisfaction in a manner similar to
ordinary FD satisfaction. This last step is common also to our approach.

The rest of this paper is organized as follows. Section 2 contains some pre-
liminary definitions that we need before defining XFDs. We model an XML
document as a tree as follows. In Section 3 the definition of an XFD is presented
and the essential ideas of our algorithm are presented. Section 4 contains details

6 Millist W. Vincent and Jixue Liu

of experiments that were performed to assess the efficiency of our approach and
Section 5 contains concluding comments.

2 Preliminary Definitions

Definition 1. Assume a countably infinite set E of element labels (tags), a
countably infinite set A of attribute names and a symbol S indicating text. An
XML tree is defined to be T = (V, lab, ele, att, val, vr) where:

1. V is a finite set of nodes;
2. lab is a total function from V to E ∪A ∪ {S};
3. ele is a partial function from V to a sequence of nodes in V such that for

any v ∈ V , if ele(v) is defined then lab(v) ∈ E;
4. att is a partial function from V ×A to V such that for any v ∈ V and a ∈ A,

if att(v, a) = v1 then lab(v) ∈ E and lab(v1) = a;
5. val is a function such that for any node in v ∈ V, val(v) = v if lab(v) ∈ E

and val(v) is a string if either lab(v) = S or lab(v) ∈ A;
6. We extend the definition of val to sets of nodes and if V1 ⊆ V , then val(V1)

is the set defined by val(V1) = {val(v)|v ∈ V1};
7. vr is a distinguished node in V called the root of T ;
8. The parent-child edge relation on V , {(v1, v2)|v2 occurs in ele(v1) or v2 =

att(v1, a) for some a ∈ A} is required to form a tree rooted at vr;

Also, the set of ancestors of a node v ∈ V is denoted by ancestor(v) and the
parent of a node v by parent(v).

We now give some preliminary definitions related to paths.

Definition 2. A path is an expression of the form l1. · · · .ln, n ≥ 1, where li ∈ E
for 1 <= i <= n−1 and ln ∈ E∪A∪{S} and l1 = root. If p is the path l1. · · · .ln
then Last(p) = ln.

For instance, if E = {root, Dept, Section, Emp} and A = {Project} then
root, root.Dept and root.Dept.Section are all paths.

Definition 3. Let p denote the path l1. · · · .ln. The function Parent(p) is the
path l1. · · · .ln−1. Let p denote the path l1. · · · .ln and let q denote the path q1. · · · .
qm. The path p is said to be a prefix of the path q, denoted by p ⊆ q, if n ≤ m
and l1 = q1, . . . , ln = qn. Two paths p and q are equal, denoted by p = q, if p is
a prefix of q and q is a prefix of p. The path p is said to be a strict prefix of q,
denoted by p ⊂ q, if p is a prefix of q and p �= q. We also define the intersection
of two paths p1 and p2, denoted but p1 ∩ p2, to be the maximal common prefix of
both paths. It is clear that the intersection of two paths is also a path.

For instance, if E = {root, Dept, Section, Emp} and A = {Project} then
root.Dept is a strict prefix of
root.Dept.Section and root.Dept.Section.Emp ∩

root. Dept.Section.Project = root.Dept.Section.

Checking Functional Dependency Satisfaction in XML 7

Definition 4. A path instance in an XML tree T = (V, lab, ele, att, val, vr) is
a sequence v1. · · · .vn such that v1 = vr and for all vi, 1 < i ≤ n,vi ∈ V and
vi is a child of vi−1. A path instance v1. · · · .vn is said to be defined over the
path l1. · · · .ln if for all vi, 1 ≤ i ≤ n, lab(vi) = li. Two path instances v1. · · · .vn

and v′1. · · · .v′n are said to be distinct if vi �= v′i for some i, 1 ≤ i ≤ n. The path
instance v1. · · · .vn is said to be a prefix of v′1. · · · .v′m if n ≤ m and vi = v′i for all
i, 1 ≤ i ≤ n. The path instance v1. · · · .vn is said to be a strict prefix of v′1. · · · .v′m
if n < m and vi = v′i for all i, 1 ≤ i ≤ n. The set of path instances over a path
p in a tree T is denoted by Paths(p).

For example, in Figure 1, vr.v1.v3 is a path instance defined over the path
root.Dept.Section and vr.v1.v3 is a strict prefix of vr.v1.v3.v4

We now assume the existence of a finite set of legal paths P for an XML
application. Essentially, P defines the semantics of an XML application in the
same way that a set of relational schema define the semantics of a relational
application. P may be derived from the DTD, if one exists, or P be derived
from some other source which understands the semantics of the application if no
DTD exists. In a sense we are assuming that XFDs and DTDs are orthogonal,
in a similar fashion to that used in [6] where keys and DTDs are assumed to
be orthogonal. We note that because of the restriction that P is finite, if P is
derived from a DTD then the DTD must be non recursive. Next, we place the
following restriction on the set of paths.

Definition 5. A set P of paths is downward closed if for any path p ∈ P , if
p1 ⊂ p then p1 ∈ P .

This is natural restriction on the set of paths and any set of paths that is
generated from a DTD will be downward closed.

We now define the notion of an XML tree conforming to a set of paths P .

Definition 6. Let P be a downward closed set of paths and let T be an XML
tree. Then T is said to conform to P if every path instance in T is a path instance
over a path in P .

We note that if the set of paths is derived from a DTD, then requiring that
the XML document conform to the set of paths is a much weaker condition than
requiring that it conform to the DTD.

The next issue that arises in developing the machinery to define XFDs is the
issue of missing information. This is addressed in [14] where missing nodes are
considered and XFDs are defined using an extension of the strong satisfaction
approach used in defining FD satisfaction in incomplete relations [4]. However,
in this paper we take the simplifying assumption that there is no missing infor-
mation in the XML tree. More precisely, we have the following definition.

Definition 7. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . Then T is defined to be complete if whenever there exist
paths p1 and p2 in P such that p1 ⊂ p2 and there exists a path instance v1. · · · .vn

defined over p1, in T , then there exists a path instance v′1. · · · .v′m defined over
p2 in T such that v1. · · · .vn is a prefix of the instance v′1. · · · .v′m.

8 Millist W. Vincent and Jixue Liu

Fig. 1. A complete XML tree

For example, if we take P to be {root, root.Dept,
root.Dept.Section, root.Dept.Section.Emp,

root.Dept.Section.Emp.S root.Dept.Section.Project} then the tree in Fig-
ure 1 conforms to P and is complete.

One important comment to make on completeness is that if the set of paths
is derived from a DTD and if we consider trees that conform to the DTD, and
not just to P , then complete trees correspond only to disjunction free DTDs as
shown in [3].

The next function returns all the final nodes of the path instances of a path
p in T .

Definition 8. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . The function N(p), where p ∈ P , is the set of nodes defined
by N(p) = {v|v1. · · · .vn ∈ Paths(p) ∧ v = vn}.

For example, in Figure 1, N(root.Dept) = {v1, v2}.
We now need to define a function that returns a node and its ancestors.

Definition 9. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . The function AAncestor(v), where v ∈ V , is the set of nodes
in T defined by AAncestor(v) = v ∪ Ancestor(v).

For example in Figure 1, AAncestor(v3) = {vr, v1, v3}. The next function re-
turns all nodes that are the final nodes of path instances of p and are descendants
of v.

Definition 10. Let P be a downward closed set of paths, let T be an XML tree
that conforms to P . The function Nodes(v, p), where v ∈ V and p ∈ P , is the
set of nodes in T defined by Nodes(v, p) = {x|x ∈ N(p) ∧ v ∈ AAncestor(x)}

For example, in Figure 1, Nodes(v1, root.Dept.Section.Emp) = {v4, v5}.

Checking Functional Dependency Satisfaction in XML 9

3 Checking XFDs

We firstly recall the definition of an XFD from [14], restricted to the situation
where the XML document is complete.

Definition 11. Let P be a set of downward closed paths and let T be a com-
plete XML tree that conforms to P . An XML functional dependency (XFD) is a
statement of the form: p1, . . . , pk → q, k ≥ 1, where p1, . . . , pk and q are paths in
P . T satisfies the XFD if there exists pi, for some i, 1 ≤ i ≤ k, such that pi = q
or whenever there exists two distinct path instances v1. · · · .vn and v′1. · · · .v′n de-
fined over q in T such that val(vn) �= val(v′n), then ∃i, 1 ≤ i ≤ k, such that
val(Nodes(xi, pi))∩val(Nodes(yi, pi)) = ∅, where: xi = {v|v ∈ AAncestor(vn)∧
v ∈ N(pi ∩ q)} and yi = {v|v ∈ AAncestor(v′n) ∧ v ∈ N(pi ∩ q)}.

We now illustrate the definition by an example.

Example 1. Consider the XFD
root.publication.publisher.S → root.publication.title in Figure 2.
Then v4∈N(root.publication.title) and v6∈N(root.publication.title)
and val(v4)="t1" �=val(v6)="t2".
So root.publication.title∩ root.publication.publisher.S =
root.publication and so N(root.publication) = {v1, v2}. Thus x11 = v1

and y11 = v2 and so Nodes(x11 , root.publication.publisher.S) = v17 and
thus val(Nodes(x11 , root.publication.publisher.S)) = {"p1"}. Also,
Nodes(y11 , root.publication.publisher.S) = v19 and so
val(Nodes(y11 , root.publication.publisher.S)) = {"p1"} and so the XFD
root.publication.publisher.S → root.publication.title is violated be-
cause val(Nodes(x11 , root.publication.publisher.S))
∩ val(Nodes(y11 , root.publication.publisher.S)) �= ∅. We note that if the
val of node v4 was changed to "t2" then the XFD would be satisfied.

Consider next the XFD root.publication.title →
root.publication.publisher.S. The only nodes in
N(root.publication.publisher.S) are v17 and v19 and val(v17) = "p1" and
val(v19) = "p1" and so the XFD root.publication.title →
root.publication.publisher.S is satisfied.

We now present an algorithm for checking whether an XML document sat-
isfies a set of XFDs. The algorithm has two major steps. The first step is to
produce what we call tuples. The second step is to hash the tuples to check if
the document satisfies the XFDs.

3.1 Tuple Generation

We start with the definition of some terms.

Definition 12 (Relevant Path). Given a set Σ of FDs {f1, . . . , fm} we use
relev(Σ), called the set of relevant paths, to denote the list of distinct paths
defined as the following:

10 Millist W. Vincent and Jixue Liu

Fig. 2. An XML tree

– all paths involved in Σ, including those on the LHS of the XFDs and also
those on the RHS;

– if p1, p2 ∈ relev(Σ) then p1 ∩ p2 ∈ relev(Σ);
– the order of the paths and path intersections in the list agrees with the order

of their appearances in documents.

Consider the example in Figure 3.
Let Σ = {root.A, root.A.B → root.A.G.C, root.A.G.C, root.A.G.D → root.A.B}.
Then relev(Σ) = [A, B, G, C, D]. Note that for simplicity, we abbreviate paths
by their end labels, which will not introduce confusion in the presentation.

We further use pathroot(Σ), called the path root, to mean the shortest path in
relev(Σ). We call a subtree rooted at a node labelled by pathroot(Σ) a relevant
tree. We call the nodes in a relevant tree labelled by the end labels of the paths
in relev(Σ) relevant nodes. Given a relevant node v, path(v) is the path on the
path instance reaching v. Given a path p ∈ relev(Σ), posi(p) is the sequential
number of p in relev(p) and if p is the first element in relev(Σ), then posi(p)
is 1.

In Figure 3, pathroot(Σ) = root.A. The subtree rooted at v1 is relevant tree.
All nodes labelled by A, B, C, D, G are relevant nodes. posi(root.A.G.D) = 5
and posi(root.A) = 1, path(v4) = root.A.G.

The concept tuple defined following is an important construct used to model
the result of document parsing.

Definition 13 (Tuple). Given a set Σ of XFDs and a relevant tree bT , a tuple
t of bT over relev(Σ) is defined as t =< val1, ..., valn > where n is the number of
paths in relev(Σ) and for each i in [1, ..., n], pi ∈ relev(Σ)∧vali = val(vu)∧vu ∈
bT ∧ lab(vu) = last(pi).

We define the following terms to be used to indicate the directions of parsing
in relation to the paths in relev(Σ).

Checking Functional Dependency Satisfaction in XML 11

Fig. 3. An XML tree and its tuples

Definition 14. Let vl be the last visited relevant node and v be the current
visited node. Then:

– v is called a down node if posi(path(v)) > posi(path(vl));

– v is called a up node if posi(path(v)) < posi(path(vl));

– v is called a across node if posi(path(v)) =

posi(path(vl)).

Note that in this definition, the directions, down, up, and across, are defined
relative to the order in relev(Σ), not the directional positions in a tree. This
is important because during parsing, we do not care about irrelevant nodes but
only concentrate on relevant nodes.

We now propose the parsing algorithm. The algorithm reads text from a
document and generates the tuples for a set of XFDs. After a line of text is read,
the algorithm tokenizes the line into tokens of tags and text strings. If a token is
a tag of a relevant path, then the parsing direction is determined. If the direction
is downward, content of the element will be read and put into the current tuple.
If it is across, new tuples are created. In the algorithm, there are two variables
openTuple and oldOpenTuple used to deal with multiple occurrences of a node.
For example in Figure 3, there are multiple B nodes. Multiple tuples need to be
created so that each occurrence can be combined with values from other relevant
nodes like C nodes and D nodes. In the algorithm, we discuss only elements but
not attributes. Attributes are only specially cases of elements when parsed and
the algorithm can be easily adapted to attributes.

12 Millist W. Vincent and Jixue Liu

Algorithm 1
INPUT: An XML document T and relev(Σ)
OUTPUT: a set of tuples

Let lastPosi = 1, curPosi = 1,
openTuple = 1, lastOpenTuple = 1

Let reading will read and tokenize input to one of the

following tokens: start tags, closing tags, and texts

Foreach token in T in order,

if token is text: set token as value to the

position curPosi of the last openTuple
of tuples

let curPosi = posi(tag)
if curPosi = 0 (NOT relevant): next token

if token is a closing tag

if current is the last in relev(Σ)
openTuple = oldOpenTuple = 1

next noken;

if curPosi > lastPosi (down)

lastOpenTuple = openTuple
lastPosi = curPosi, next token

if curPosi = lastPosi (across)

create oldOpenTuple new tuples

copy the first lastPosi − 1 values from

the previosu tuple to the new tuples

openTuple = openTuple + lastOpenTuple
next token

if curPosi < lastPosi (up)

lastPosi = curPosi, next token

end foreach

Observation 1: The time for the above algorithm to generate tuples is linear
in the size of the document.

3.2 Hashing and Adaption

Once we get the tuples, we use hashing to check if the XFDs are satisfied by
the document which is now represented by the tuples. Hashing is done for each
XFD. In other words, if there are m XFDs, m hash tables will be used. Let Tup
be the tuples generated by Algorithm 1. We project tuples in Tup onto the paths
of an XFD f := {p1, ..., pn} → q to get a projected bag of tuples denoted by
Tup(f). For each tuple t in Tup(f), f(p) denotes the projection t[p1, ..., pn] and
f(q) denotes t[q]. Then a hash table is created for each XFD as follows.

The hash key of each hash table is f(p) and the hash value is f(q). When
two tuples with the same f(p) but different f(q)s are hashed into a bucket, the
XFD is violated. This criteria corresponds exactly to the definition of an XFD
but with the condition that there is no collision.

Checking Functional Dependency Satisfaction in XML 13

We define a collision to be the situation where two tuples get the same hash
code which puts the two tuples in the same bucket. Based on the criteria above,
this means that the two tuples make the XFD violated but in fact they do
not. For example, if the two tuples for < f(p), f(q) > are < 10...0, 1 > and
< 20...0, 2 > where ‘...’ represent 1000 zeros. If a hash function is the modular
operator with the modular being 1 million indicating there are 1 million buckets
in the hash table, then the two tuples will be put into the same bucket of the hash
table which indicate that the XFD is not satisfied based on the criteria presented
above. However, the tuples satisfy the XFD. With normal extendible hashing the
traditional solution to this problem is to double the size of the hash table, but
this means that memory space can be quickly doubled while the two tuple are
still colliding. In fact with only two tuples that collide, we can exhaust memory,
no matter how large, if there is no appropriate collision handling mechanism.

With our implementation, we use two types of collision handling mechanisms.
The first one is doubling the size of the hash table. As discussed above, this only
works for a limited number of cases. The second technique is used if the table
size cannot be doubled. The second method involves the use of overflow buckets
and is illustrated in Figure 4.

Fig. 4. Bucket structure of hash table

In the figure, a bucket has a section, denoted by bask(q), to store f(q) and
a downward list, denoted by bask(p), to store f(p)’s if there are multiple tuples
having the same f(q) but different f(p)’s because of a collision. It is also possible
that multiple tuples having different f(q)’s come into the same bucket, as we
discussed before, because of a collision. In this case, these tuples are stored, based
on their f(q) values, in the extended buckets which are also buckets connected
to the main bucket horizontally.

With this extension, the following algorithm is used to check if the XFDs is
satisfied.

The performance of the algorithm is basically linear. There is a cost to run
the “bucket loop” in the algorithm. However, the cost really depends on the
number of collisions. From our experiments, we observed that collision occurred,
but the number of buckets involved in collisions is very low. At the same time,
more collisions means a higher probability of violating the XFDs.

14 Millist W. Vincent and Jixue Liu

Algorithm 2
INPUT: A set Tup(f) of tuple for XFD f
OUTPUT: true or false

Set the hash table size to the maximum allowed by

the computer memory

Foreach t in Tup(f)
let code = hashFunction(f(p))
set current bucket to bucket code
bucket loop

if bask(q) = f(q), insert f(p) in to

bask(p) else if it is not in it

exit the bucket loop

if bask(q)! = f(q), check to see if

f(p) is in bask(p),
if yes, exit algorithm with false,

if not, let the current bucket be

the next extended bucket

go to the beginning of the

bucket loop

end bucket loop

end foreach

return true

4 Experiments

In this section we report on experiments with the algorithms presented in the
previous section. All the experiments were run on 1.5GHz Pentium 4 machine
with 256MB memory. We used the DTD given in Example 5 and artificially
generated XML documents of various sizes in which the XFD was satisfied, the
worst case situation for running time as in such a case all the tuples need to
be checked. When documents were generated, multiple occurrences of the nodes
with the same labels at all levels were considered. Also, the XFDs were defined
involving paths at many levels and at deep levels.

In the first experiment, we checked the satisfaction of one XFD and fixed the
number of paths on the left hand side of the XFD to 3. We varied the size of the
XML document and recorded the CPU time required to check the document for
the satisfaction of one XFD. The results of this experiment are shown in Figure
6. These results indicate that the running time of the algorithm is essentially
linear in the number of tuples. This is to be expected as the time to perform
the checking of an XFD is basically the time required to read and parse the
XML document once, which is linear in the size of the document and to hash
the tuples into the hash table which again is linear.

In the second experiment, we limited ourselves to only one XFD, fixed the
number of tuples in the XML document to 100,000 (and so the size of the
document was also fixed), but varied the number of paths on the left hand side
of the XFD. The results are shown in Figure 7. The figure shows that again the
time is linear in relation to the number of paths. This is also to be expected

Checking Functional Dependency Satisfaction in XML 15

Fig. 5. Implementation DTD

Fig. 6. The number of tuples vs checking time (in seconds)

because the number of paths in a XFD only increases the length of a tuple, but
does not require any change to other control structures of the algorithm and
therefore the times for reading, parsing, and checking are all kept linear. It is
the increase of tuple length that caused the slight increase in processing time
and this increase is slow and linear.

In the third experiment, we fixed the number of paths on the left hand side
of a XFD to 3 and also fixed the file size and the number of tuples, but varied
the number of XFDs to be checked. The result is shown in Figure 8. This result
shows that the time is linear in the number of XFDs to be checked, but the
increase is steeper than that of Figure 7. This is caused by the way we do the
checking. In the previous section, we said that for each XFD, we create a hash
table. However, for a very large number of XFDs this requires too much memory

16 Millist W. Vincent and Jixue Liu

Fig. 7. Number of paths in the left and side of an XFD vs checking time

Fig. 8. Number of XFDs to be checked vs checking time

so in this experiment, we created one hash table, checked one XFD, and then
used the same hash table to check the second XFD. Thus the time consumed is
the addition of the times for checking these XFDs separately. The benefit of this
algorithm is that parsing time is saved. Parsing time, based on our experience,
is a little more than the time for hashing. Furthermore, the performance of the
third experiment can be improved if a computer with bigger memory is used.

5 Conclusions

In this paper we have addressed the problem of developing an efficient algorithm
for checking the satisfaction of XFDs, a new type of XML constraint that has
recently been introduced [14]. We have developed a novel hash based algorithm
that requires only one scan of the XML document and its running time is linear
in the size of the XML document and linear in the number of XFDs. Also, our
algorithms can be used to efficiently incrementally check an XML document.

There are several are other extensions to the work in this paper that we
intend to conduct in the future. The first is to extend the algorithm to the case
where there is missing information in the XML document as defined in [14]. The
second is to extend the approach to the checking of multivalued dependencies in
XML, another new XML constraint that has recently been introduced [12, 13].

Checking Functional Dependency Satisfaction in XML 17

References

1. M. Arenas and L. Libkin. A normal form for XML documents. In Proc. ACM
PODS Conference, pages 85–96, 2002.

2. M. Arenas and L. Libkin. An information-theoretic approach to normal forms for
relational and XML data. In Proc. ACM PODS Conference, pages 15–26, 2003.

3. M. Arenas and L. Libkin. A normal form for XML documents. TODS, 29(1):195
– 232, 2004.

4. P. Atzeni and V. DeAntonellis. Foundations of databases. Benjamin Cummings,
1993.

5. T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible markup language
(XML) 1.0. Technical report, http://www.w3.org/Tr/1998/REC-XML-19980819,
1998.

6. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about keys
for XML. Information Systems, 28(8):1037–1063, 2003.

7. P. Buneman, W. Fan, J. Simeon, and S. Weinstein. Constraints for semistructured
data and XML. ACM SIGMOD Record, 30(1):45–47, 2001.

8. P. Buneman, W. Fan, and S. Weinstein. Path constraints on structured and
semistructured data. In Proc. ACM PODS Conference, pages 129 – 138, 1998.

9. Y. Chen, S. Davidson, and Y. Zheng. Xkvalidator: a constraint validator for xml.
In CIKM, pages 446–452, 2002.

10. W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs.
Journal of the ACM, 49(3):368 – 406, 2002.

11. W. Fan and J. Simeon. Integrity constraints for XML. Journal of Computer and
System Sciences, 66(1):254–291, 2003.

12. M.W. Vincent and J. Liu. Multivalued dependencies and a 4NF for XML. In 15th
International Conference on Advanced Information Systems Engineering (CAISE),
pages 14–29. Lecture Notes in Computer Science 2681 Springer, 2003.

13. M.W. Vincent, J. Liu, and C. Liu. Multivalued dependencies and a redundancy free
4NF for XML. In International XML database symposium (Xsym), pages 254–266.
Lecture Notes in Computer Science 2824 Springer, 2003.

14. M.W. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their
application to normal forms in XML. ACM Transactions on Database Systems,
29(3):445–462, 2004.

15. M.W. Vincent, J. Liu, C. Liu, and M.Mohania. On the definition of functional
dependencies in XML. In submitted to ACM Transactions on Internet Technology,
2004.

16. J. Widom. Data management for XML - research directions. IEEE data Engineer-
ing Bulletin, 22(3):44–52, 1999.

jian@cs.mun.ca

sgzhou@fudan.edu.cn

→
∈

∈
∈

⊆

≤ ≤

λ λ
λ

π
≤ ≤

→

→ →
∈

→

→

λ ε
→

λ

→

→

≤ ≤ ≤

→
λ λ

≡
≤ ≤ λ λ ≤ λ ≥

μ μ μ

→ ∈
→

∈
∉μ ≤ ≤ π π

∈ μ ≤ ≤
μ ≤ λ

μ μ λ μ μ ≤ λ

α ∈ α
α ≤ α

μ α ≥ μ

μ λ
μ

λ

∈

λ μ λ

→
π π

→

π →
→

π
π →

∈ π
π

∈
∈ ∈ π

≤

→
→ ∈

≠ ≠ π
≠ π π

π ∈

π π π π

π π
π π

π π
π

π
∈

π

⊇

π
π π

π

→

Φ

≠ ≠ ← Φ
∈ ∉ ← Φ

Φ ← Φ

Φ ← Φ

≠ Φ

≠ Φ

Φ

← Φ
≠ ≠

∈ ∉

Φ

Φ

≠ Φ

≠ Φ
←

∈

← ∪
←

Φ

•
•

λ μ λ → μ
λ μ λ

μ λ
μ

λ μ λ →
μ λ μ λ μ λ λ

μ

≤ ≤

≤ ≤ ≤ ≤

μ
λ

λ

γ
γ

γ
γ

γ

γ γ
γ

λ μ λ μ
μ →

μ μ
λ → λ

λ

λ
λ

→

λ

→ λ
λ μ μ

λ
μ λ

λ μ
λ

λ

π →
∈ ≠

∈

λ μ λ μ
λ μ π λ →

μ π μ

μ
μ π

λ μ μ
μ

λ μ π
λ μ

λ
λ

λ

λ λ μ

π

→

←

¬

← ε ε

≠
←

←

•

⊂

A Path-Based Labeling Scheme
for Efficient Structural Join

Hanyu Li, Mong Li Lee, and Wynne Hsu

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

{lihanyu,leeml,whsu}@comp.nus.edu.sg

Abstract. The structural join has become a core operation in XML
query processing. This work examines how path information in XML
can be utilized to speed up the structural join operation. We introduce
a novel approach to pre-filter path expressions and identify a minimal
set of candidate elements for the structural join. The proposed solu-
tion comprises of a path-based node labeling scheme and a path join
algorithm. The former associates every node in an XML document with
its path type, while the latter greatly reduces the cost of subsequent
element node join by filtering out elements with irrelevant path types.
Comparative experiments with the state-of-the-art holistic join algorithm
clearly demonstrate that the proposed approach is efficient and scalable
for queries ranging from simple paths to complex branch queries.

1 Introduction

Standard XML query languages such as XQuery and XPath support queries
that specify element structure patterns and value predicates imposed on these
elements. For example, the query “//dept[/name=‘CS’]//professor” retrieves
all the professors from the CS department. It comprises of a value predicate
“name=‘CS’ ” and two structural relations “dept//professor” and “dept/name”
where ‘/’ and “//” denote the child and descendant relationships respectively.

Traditional relational database access methods such as the B+-tree can be
easily extended to process value predicates in XML queries. Hence, the support of
tree structured relationships becomes the key to efficient XML query processing.

Various node labeling schemes have been developed to allow the containment
relationship between any two XML elements to be determined quickly by exam-
ining their labels or node ids. [4] identifies the structural join as a core operation
for XML query pattern matching and develops a structural join algorithm called
Stack-Tree which utilizes the interval-based node labeling scheme to evaluate
the containment relationship of XML elements. Index-based methods such as
B+-tree [7], XR-tree [11], and XB-tree [5] speed up the structural join operation
by reducing the number of elements involved in the node join.

In this work, we design a novel path-based approach to further expedite the
structural join operation. The idea is to associate path information with the
element nodes in an XML document so that we can filter out nodes that clearly

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 34–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Path-Based Labeling Scheme for Efficient Structural Join 35

do not match the query, and identify a minimal set of nodes for the regular node
join. The proposed approach has the following unique features and contributions:

1. Path Labeling Scheme. We design a path-based labeling scheme that assigns
a path id to every element to indicate the type of path on which a node
occurs. The scheme is compact, and the path ids have a much smaller size
requirement compared to the node ids (see Section 5 on space requirement).

2. Containment of Path Ids. The well-known node containment concept allows
the structural relationship between any two nodes in an XML document to
be determined by their node labels. Here, we introduce the notion of path
id containment and show how the path labeling scheme makes it easy to
distinguish between parent-child and ancestor-descendant relationships.

3. Path Join. We design a path join algorithm as a preprocessing step before
regular node join to filter out irrelevant paths. The path join algorithm as-
sociates a set of relevant path ids to every node in the query pattern, thus
identifying the candidate elements for the subsequent node join. Experi-
mental results indicate that the relatively inexpensive path join can greatly
reduce the number of elements involved in the node join.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related work. Section 3 presents the path-based labeling scheme. Section 4 de-
scribes the query evaluation. Finally, Section 5 presents the experimental results,
and we conclude in Section 6.

2 Related Work

There has been a long stream of research in XML query evaluation. Early works
develop various path index solutions such as DataGuides [10] and 1-Index [14]
to summarize the raw paths starting from the root node in an XML document.
These index structures do not support branch queries and XML queries involving
wildcards and ancestor-descendant relationships efficiently. Index Fabric [9] uti-
lizes the index structure Patricia Trie to organize all the raw paths, and provides
support for the “refined paths” which frequently occur in the query workload.

The work in BLAS [6] also utilizes path information (p-labeling) to pre-
filter out unnecessary elements. BLAS employs integer intervals to represent
all the possible paths, regardless of whether or not they occur in the XML
dataset. Hence, BLAS will perform best for suffix queries, i.e., queries that start
with optional descendant axis followed by child axes. In contrast, the proposed
path encoding scheme utilizes bit sequences to denote the paths that actually
occur in the XML datasets. Therefore, the proposed solution will yield optimal
performance for simple queries, which are a superset of suffix queries.

The structural join is a core operation in many XML query optimization
methods [4, 5, 7, 11–13]. [13] uses a sort-merge or a nested-loop approach to
process the structural join. This method may scan the same element sets multiple
times if the XML elements are recursive. Stack-Tree [4] solves this problem by
applying an internal stack to store the subset of elements that is likely to be

36 Hanyu Li, Mong Li Lee, and Wynne Hsu

used later. Index-based binary structural join solutions such as B+-tree [7], one
dimensional R-tree [7], XB-tree [5] and XR-tree [11] employ different ways to
“skip” elements involved in the query pattern without missing any matches.
Holistic twig join methods such as XB-tree based TwigStack [5] and XR-tree
based TSGeneric [12] are designed to process XML queries involving more than
two nodes.

Sequence based approaches such as ViST [16] and PRIX [15] apply different
ways to transform both the XML documents and queries into sequences. Query
evaluation is carried out using sub-sequence matching. However, ViST may pro-
duce false alarms in the results, and PRIX requires a substantial amount of
post-processing to guarantee the accuracy of the query results.

3 Path-Based Labeling Scheme

We design a path-based labeling scheme that assigns a path id to every element
node in an XML document to indicate the type of path on which the node occurs.
Each element node is now identified by a pair of (path id, node id). The node
id can be assigned using any existing node labeling scheme, e.g., interval-based
[13], prefix [8], prime number [17]. Text nodes are labeled with node ids only.

A path id is composed of a sequence of bits. We first omit the text nodes
from an XML document. Then we find distinct root-to-leaf paths in the XML
document by considering only the tag names of the elements on the paths. We
use an integer to encode each distinct root-to-leaf path in an XML document.
The number of bits in the path id is given by the number of the distinct root-to-
leaf element sequences of the tag names that occur in the XML document. Path
ids are assigned to element nodes in a bottom-up manner as follows.

1. After omitting the text nodes in an XML document, let the number of dis-
tinct root-to-leaf paths in the XML document be k. Then the path id of an
element node has k bits. These bits are initially set to 0.

2. The path id of every leaf element node is given by setting the ith bit (from
the left) to 1, where i denotes the encoding of the root-to-leaf path on which
the leaf node occurs.

3. The path id of every non-leaf element node is given by a bit-or operation on
the path ids of all its element child nodes.

Consider the XML instance in Figure 1(a) where the node ids have been
assigned using a pre-order traversal. Figure 1(b) shows the integer encodings of
each root-to-leaf paths in the XML instance. Since there are 6 unique root-to-leaf
paths, 6 bits are used for the path ids.

The path id of the element leaf node F (node id = 7) is 010000 since the
encoding of the path Root/A/B/C/D/F on which F occurs is 2. The path id
of the non-leaf node A (node id = 3) is obtained by a bit-or operation on the
path ids of its child nodes B and C, whose path ids are 010000 and 001000
respectively. Therefore, the path id of A is 011000. Note that each text node is
only labeled by a node id.

A Path-Based Labeling Scheme for Efficient Structural Join 37

Encoding Table Storage Structure

B

.......

(a) (b) (c)

Node List for APath Lists

A

.......

page

011000

010110

100000

Path idPath list

Text "2004" (15)
Text "1997" (8)

Encoding

Root/B

Root/A/B/C

Root/A/B/D/E

Root/A/C

Root/A/B/C/D/F

Root/A

6

5

4

2

3

1

Root−to−leaf Path

(000010,18)

(000100,17)
E

(010000,14)
F

(010000,13)
D

(010000,12)

(001000,9)

(010000,7)

(010000,6)

(010000,5)

D

(010000,4) (000001,19)
B

CDC

B (010110,11)

A(100000,20)(010110,10)AA(011000,3)A(100000,2)

C

F

(111111,1)Root

C

B

(000100,16)

Fig. 1. Path-Based Labeling Scheme and Its Storage Structure

3.1 Storage Structure
In order to facilitate the direct retrieval of elements with a specified path id, we
design the following storage structure:

1. All the path ids of one element tag comprise the path id list of this element.
2. All the node ids of one element tag comprise the node id list of this element.

The node list is first clustered by element path ids, and then sorted on the
node ids.

3. Each path id in the path id list points to the first element with this path id.

Figure 1(c) shows how the example XML document in Figure 1(a) is stored.
Tag A has four occurrences with three distinct path ids. There are two occur-
rences corresponding to the first path id (100000) and one each corresponding
to the other two (011000 and 010110).

3.2 Containment of Path IDs
In this section, we introduce the notion of path id containment that is based
on the proposed path labeling scheme and examine the relationship of path id
containment with node containment.

Definition (Path ID Containment): Let PidA and PidB be the path ids of
nodes A and B respectively. If all the bits with value 1 in PidA cover all the
bits with value 1 at corresponding positions in PidB, then we say PidA contains
PidB.

The containment relationship between the path ids can simply be determined
with a bit-and operation. That is, if (PidA & PidB) = PidB where & denotes
the “bit-and” operation, then PidA contains PidB. For example, in Figure 1,
the path id of A(010110,10) contains the path id of C(010000,12).

Definition (Strict Path ID Containment): Let PidA and PidB be the path
ids of nodes A and B respectively. If PidA contains PidB and PidA �= PidB,
then we say PidA strictly contains PidB.

38 Hanyu Li, Mong Li Lee, and Wynne Hsu

In Figure 1, the path id of A (010110,10) strictly contains the path id of C
(010000,12).

The node containment between nodes can be deduced from path id contain-
ment relationship. Theorem 1 introduces this.

Theorem 1: Let PidA and PidD be the path ids for elements with tags A and
D respectively. If PidA strictly contains PidD, then each A with PidA must
have at least one descendant D with PidD.

Proof: Since PidA strictly contains PidD, then all the bits with value 1 in PidD

must occur in PidA at the same positions. Further, PidA will have at least one
bit with value 1 such that the corresponding bit (at the same position) in PidD

is 0. Consequently, elements with tag A will occur in the same root-to-leaf paths
as the elements with tag D, and there will exist at least one root-to-leaf path
such that elements with tag A occur, and elements with tag D do not occur.
As a result, all the elements with tag A must have elements with tag D as
descendants. �

Consider again Figure 1. The path id 010110 for node B strictly contains the
path id 010000 for node C. Therefore, each node B (node id=11) with path id
010110 must be the ancestor of at least one node C (node id=12) with path id
010000.

In the case where there are two sets of nodes with the same path ids, we
need to check their corresponding root-to-leaf paths to determine their structural
relationship. For example, the nodes A and B (node ids are 10 and 11) in Figure 1
have the same path id 010110. We can decompose the path id 010110 into 3 root-
to-leaf paths with the encodings 2, 4 and 5 since the bits in the corresponding
positions are 1. Thus, by looking up any of these paths (in the encoding table)
where nodes A and B occur, we know that all the nodes A with path id 010110
have B descendants with this path id.

Similarly, the encoding table can help us to determine the exact containment
relationship between any two sets of nodes, that is, parent-child, grandparent-
grandchild, etc. For example, given the path id 010110 for nodes B and the
path id 010000 for nodes C, we know that all the B nodes have C descendants.
Further, from the root-to-leaf path with value 2, we also know that the B nodes
are parents of the corresponding C nodes.

In other words, if PidA and PidD are the path ids of two sets of nodes A
and D respectively, then we can determine the exact relationship (parent-child,
grandparent-grandchild..) between these two sets of nodes from the encoding
table, provided that a tag name occurs no more than once in any path. For
example, suppose nodes A and D have the same path ids, and their corresponding
root-to-leaf path is “A/D/A/D”. In this case, the structural relationship between
A and D can only be determined by examining their node labels (node ids).

4 Evaluation of Structural Join

The structural join operation evaluates the containment relationship between
nodes in given XML queries. Our path-based approach processes structural join

A Path-Based Labeling Scheme for Efficient Structural Join 39

in two steps: (1) path join, and (2) node join. The algorithms for carrying out
these two steps are called PJoin and NJoin respectively.

4.1 PJoin

The PJoin algorithm (Algorithm 1) aims to eliminate as many unnecessary
path types as possible, thus minimizing the elements involved in the subsequent
NJoin.

Given an XML query modelled using a tree structure T , PJoin will retrieve
the set of path ids for every element node in T . Starting from element leaf nodes
in T , PJoin will perform a binary path join between each pair of parent-child
nodes. This process is carried out in a bottom-up manner until the root node is
reached. After that, a top-down binary path join is performed to further remove
unnecessary path ids.

A binary path join takes as input two lists of path ids, one for the parent
node and the other for the child node. A nested loop is used to find the matching
pairs of path ids based on the path id containment property. Any path id that
does not satisfy the path id containment relationship is removed from the lists
of path ids of both parent and child nodes.

Algorithm 1 PJoin (T)
Input: T - An XML Query.
Output: Path ids for the nodes in T .

1. Associate every node in T with its path ids.
2. Perform a bottom-up binary path join on T .
3. Perform a top-down binary path join on T .

{ c1, c3 }

B

C D

E { e3, e4, e5 }

{ d2, d3, d4 }

(a) XML Query T1

{ b3 }

{ c1, c3 }

B

C D

E

{ d3 }

{ e3, e4 }

(b) Result of Bottom−Up Path Join

{ b1, b2, b3, b4 } { b3 }

{ c3 }

B

C D

E { e3 }

{ d3 }

(c) Result of Bottom−Up Path Join

Followed by Top−Down Path Join

Fig. 2. Example of PJoin

Consider the XML query T 1 in Figure 2(a) where the lists of path ids have
been associated with the corresponding nodes. We assume that the path ids
with the same subscripts satisfy the path id containment relationship, that is,
b1 contains c1, b3 contains d3 and e3, etc.

The PJoin algorithm evaluates the query T 1 by first joining the path ids of
node B with that of node C. The path id c1 and c3 are contained in the path id
b1 and b3 respectively. Thus, we remove b2 and b4 from the set of path ids of B.

40 Hanyu Li, Mong Li Lee, and Wynne Hsu

Next, the algorithm joins the set of path ids of D with that of E. This is
followed by a join between the sets of path ids of B and D. The result of the
bottom-up path join is shown in Figure 2(b).

Finally, the algorithm carries out a top-down path join on T 1 starting from
the root node B. Figure 2(c) shows the final sets of path ids that are associated
with each node in T 1. Compared to the initial set of path ids associated with
each node in Figure 2(a), the PJoin algorithm has greatly reduced the number of
elements involved in the query. The subsequent node join is now almost optimal.

Note that omitting either the bottom-up or top-down tree traversal will not
be able to achieve this optimal result. This is because a single tree traversal
cannot project the result of each binary path join to the nodes which have been
processed earlier. In Figure 2(b), elements C and E contains unnecessary path
ids c1 and e4 compared to the final optimal results.

4.2 NJoin

The output of PJoin algorithm is a set of path ids for the element nodes in a
given query tree. Elements with these path ids are retrieved for a node join to
obtain the result of the query. Algorithm 2 shows the details of NJoin.

We modify the holistic structural join developed in [5] to perform the node
join. The element nodes are retrieved according to the path ids obtained from the
PJoin, while all the value (text) nodes are retrieved directly. Finally, a holistic
structural join is carried out on all the lists obtained.

Algorithm 2 NJoin(T)
Input: T - An XML Query.
Output: All occurrences of nodes in T .

1. Retrieve the elements according to the path ids associated with nodes in T
2. Retrieve the values imposed on the element nodes.
3. Perform holistic structural join on T .

We observe that the structural join in Line 3 of Algorithm 2 requires that
the input stream for every node in the query must be an ordered list of node ids.
However, Line 1 of Algorithm 2 produces a set of ordered sublists, each of which
is associated with a path id obtained in the PJoin. Therefore, when performing
the structural join, we will need to examine these multiple sublists of node ids
for an element tag to find the smallest node id to be processed next.

4.3 Discussion

The path join is designed to reduce the number of elements involved in the
subsequent node join. In this section, we analyze the effectiveness of the proposed
path join.

A Path-Based Labeling Scheme for Efficient Structural Join 41

Definition (Exact Pid Set): Let P be a set of path ids obtained for a node
n in an XML query T . P is an exact Pid set with respect to T and n if the
following conditions hold:

1. for each path id pi ∈ P , the element with tag n and path id pi is a result for
T , and

2. for each path id pj /∈ P , the element with tag n and path id pj is not a result
for T .

Definition (Super Pid Set): Let P be a set of path ids obtained for a node n
in an XML query T . P is a super Pid set with respect to T and n if each element
with a tag n in the final result (after node join) is associated with a path id pi

such that pi ∈ P .
Clearly, each element node is associated with its super Pid set after the path

join. The result is optimal when these super Pid sets are also the exact Pid sets.
Next, we examine the situations where path join will yield exact Pid sets.

We assume that the XML elements are non-recursive.

Simple Path Queries. Suppose query T is a simple path query without value
predicates. Then each node in T will have an exact Pid set after the path join.
This is because all the path ids that satisfy the path id containment property are
reserved in the adjacent nodes of T . Since this containment property is transitive,
all the path ids of a node n in T will contain the path ids of its descendant nodes,
and vice versa. Moreover, the encoding table for the paths can identify the ex-
act containment relationship (parent-child or ancestor-descendant) between the
nodes in T . Therefore, given a simple path XML query without value predicates,
the path join will eliminate all the elements (path ids) that do not appear in the
final result sets.

Branch Queries. If a query T is a branch query, then we cannot guarantee
that the nodes on the branch path have exact Pid sets because of the manner
in which the path ids are assigned to the elements. In other words, the path
id is designed to capture the containment relationship, but not the relationship
between sibling nodes.

Consider the query in Figure 3(a) which is issued on the XML instance in Fig-
ure 1. After the path join, node F will be associated with a path id 010000. How-
ever, we see that only F(010000,14) is an answer to this query while F(010000,7)
is not. This is because we can only detect 010000 (path id of F) is contained
by 010110 (path id of B), but do not know whether an F element with path id
010000 will have sibling E. Finally, note that the path id set of B in Figure 3(a)
is guaranteed to be an exact Pid set since B has no sibling nodes.

Queries with Value Predicates. Figure 3(b) shows an XML query with
value predicates that will lead to super Pid sets after a path join. The node
D (010000,13) and F (010000,14) in Figure 1 are not answers to the query al-
though the path id 010000 occurs in the path id sets of D and F respectively
after the path join. This is because we do not assign path information to value

42 Hanyu Li, Mong Li Lee, and Wynne Hsu

B { 010110 }

F
{ 010000 }

{ 010000 }

Text "1997"

(b) value predicate(a) branch query

{ 000100 }{ 010000 }

F

D

E

Fig. 3. Examples of Super Pid Set

nodes. Therefore, the element nodes with the matching path id can only satisfy
the structural relationship, and not the value constraints. As a result, if an XML
query has value predicates, the path id set of each node in the query pattern
may not be the exact Pid set.

To summarize, for non-recursive XML data, the exact Pid sets will be asso-
ciated with the element nodes in simple XML query patterns after the path join,
while only the super Pid sets (which are much less than the full path id sets of
elements as shown in our experimental section) can be guaranteed for the nodes
in branch queries and queries with value predicates.

5 Experiments

This section presents the results of experiments to evaluate the performance of
proposed path-based approach. We compare the path-based approach with the
state-of-the-art XB-tree based TwigStack [5]. Both solutions are implemented
in C++. All experiments are carried out on a Pentium IV 2.4 GHz CPU with 1
GB RAM. The operating system is Linux 2.4. The page size is set to be 4 KB.

Table 1 shows the characteristics of the experimental datasets which include
Shakespeare’s Plays (SSPlays) [1], DBLP [2] and XMark benchmark [3]. At-
tributes are omitted for simplicity.

Table 1. Characteristics of Datasets

Datasets Size �(Distinct Elements) �(Elements)

SSPlays 7.5 MB 21 179,690

DBLP 60.7 MB 32 1,534,453

XMark 61.4 MB 74 959,495

5.1 Storage Requirements

We first compare the space requirement of the path-based approach with the
XB-tree [5]. Our implementation of the XB-tree bulkloads the data and keeps
every node half full except for the root node. The page occupancy for the node
lists in the path-based approach is also kept at 50%. To be consistent with the
XB-tree, the path-based solution also utilizes the interval-based node labeling
scheme to assign the node ids. The storage requirements are shown in Table 2.

A Path-Based Labeling Scheme for Efficient Structural Join 43

It can be observed that the sizes of encoding tables are very small (0.24K,
0.38K and 2.9K respectively), and hence we load them into memory in our
experiments. The space required by the path lists is determined by the degree of
regularity of the structures of the XML documents (see Table 3). The real-world
datasets typically have a regular structure, and thus have fewer distinct paths
(40 distinct paths in SSPlays and 69 in DBLP) compared to the 344 distinct
paths in the synthetic XMark dataset. Since the number of bits in the path id is
given by the number of distinct paths, the path ids for the SSPlays and DBLP
are only 5 and 9 bytes respectively. In contrast, the irregular structure in XMark
needs 43 bytes for the path id.

Table 2. Space Requirements

Datasets XB Path
Encoding Table Path Lists Node Lists

SSPlays 8.0MB 0.24KB 5.9KB 6.5MB

DBLP 69.6MB 0.38KB 9.1 KB 57.2MB

XMark 40.4MB 2.90KB 884.2KB 32.3MB

Table 3. Storage for Path Ids

Datasets �(Distinct Path) Path Id Size(Bytes)

SSPlays 40 5

DBLP 69 9

XMark 344 43

We also observe that the size of the path lists is relatively small compared
with that of node lists. Even for the most irregular structure dataset XMark,
the size of path lists takes only 2.7% of its node lists size (884K and 32M re-
spectively). This feature fundamentally guarantees the low cost of path join.

5.2 Query Performance
Next, we investigate the query performance of the path-based approach and
compare it with the XB-tree based holistic join [5]. Table 4 shows the query
workload for the various datasets. The query workload comprises short simple
queries, long path queries and branch queries (Q1-Q8). To examine the effect of
parent-child relationship, we replace some ancestor-descendant edges in queries
Q1, Q3 and Q8 with parent-child relationship. Moreover, value constraints are
imposed on queries Q1, Q2, Q5 and Q6 respectively to test the influence of value
predicates.

Effectiveness of Path Join. In this set of experiments, we demonstrate the
effectiveness of the path join algorithm in filtering out elements that are not
relevant for the subsequent node join.

A metric called “Filtering Efficiency” is first defined to measure the filtering
ability of path join. This metric gives the ratio of the number of nodes after a

44 Hanyu Li, Mong Li Lee, and Wynne Hsu

Table 4. Query Workload

Query Dataset � Nodes
in Result

Q1 //PLAY//TITLE SSPlays 1068

Q2 //PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR SSPlays 2259

Q3 //SCENE//STAGEDIR SSPlays 6974

Q4 //proceedings/booktitle DBLP 3314

Q5 //proceedings[/url]/year DBLP 5526

Q6 //people/person/profile[/age]/education XMark 7933

Q7 //closed auction/annotation[//emph]//keyword XMark 13759

Q8 //regions/australia/item//keyword[//bold]//emph XMark 74

Q1pc //PLAY/TITLE SSPlays 74

Q3pc //SCENE/STAGEDIR SSPlays 5010

Q8pc //regions/australia/item//keyword[/bold]/emph XMark 74

Q1v //PLAY//TITLE=“ACT II” SSPlays 111

Q2v //PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR=“Aside” SSPlays 1044

Q5v //proceedings[/url]//year=“1995” DBLP 432

Q6v //people/person[/age=“18”]/profile/education XMark 2336

path join over the total number of nodes involved in the query. That is, given a
query Q, we have

Filtering Efficiency =
∑ |Np

i |∑ |Ni|
where |Np

i | denotes the number of instances for node Ni after a path join and
|Ni| denotes the total number of instances for Ni in the query.

We also define “Query Selectivity” to reflect the percentage of nodes in the
result set compared to the original number of nodes involved in the query. Given
a query Q, we have

Query Selectivity =
∑ |Nn

i |∑ |Ni|
where |Nn

i | denotes the number of instances for node Ni in the result set after
a node join and |Ni| is the same as above.

The effectiveness of path join can be measured by comparing the values of
its Filtering Efficiency and Query Selectivity. Based on the definitions of these
two metrics, we can see the closer the two values are, the more effective the path
join is for the query. The optimal case is achieved when the Filtering Efficiency
is equivalent to the Query Selectivity, indicating that path join has effectively
filtered out all irrelevant elements for the subsequent node join.

Figures 4(a) compares the Filtering Efficiency with Query Selectivity for
queries Q1 to Q8 whose Query Selectivity values are in ascending order. Except
for queries Q6, Q7 and Q8, the rest queries have the same values for two metrics.
This shows that path join has effectively removed all irrelevant elements for the
node join.

Queries Q6, Q7 and Q8 have higher Filtering Efficiency values compared to
their Query Selectivity. This indicates that the path join algorithm does not
produce exact Pid sets for the subsequent node join for these queries. As we

A Path-Based Labeling Scheme for Efficient Structural Join 45

(a) Filtering Efficiency Vs Query Selectiv-
ity

(b) PJoin and NJoin (I/O cost)

Fig. 4. Effectiveness of Path Join

have analyzed in Section 4.3, the Pid sets associated with nodes after the path
join may not be the exact Pid sets for branch queries. Since Q6, Q7 and Q8
are all branch queries, this result is expected. Note that path join still remains
efficient in eliminating unnecessary path types even for branch queries, which
can be seen from the close values of filtering efficiency and query selectivity of
queries Q5, Q6, Q7 and Q8 (all are branch queries, and the two values are same
for Q5).

Figure 4(b) compares the I/O cost of path join and node join. The graph
shows that the cost of path join is very marginal for the majority of the queries
compared to that of node join. This is because the size of path lists involved in
the query is much smaller than that of node lists (recall Table 2).

The costs of path join for queries Q1 to Q5 are negligible because of the
regular structures of SSPlays and DBLP. The path join is more expensive for
the queries over XMark dataset (Q6 to Q8) due to its irregular structure, which
results in a larger number of path types and longer path ids. Among these queries
on synthetic dataset (Q6 to Q8), query Q8 is the only one where the cost of path
join is greater than the node join. This can be explained by the low selectivity
of Q8 (74 nodes in result, Table 4), which directly contributes to the low cost of
node join. Finally, the result in Figure 4(a) clearly demonstrates that the path
join remains effective in filtering out a large number of elements for queries even
with the influence of irregularity in synthetic dataset.

Efficiency of Approach. In this set of experiments, we compare the perfor-
mance of path-based approach with XB-tree based holistic join [5]. The metrics
used are the total number of elements accessed and I/O cost. Figure 5 shows
that the path-based approach performs significantly better than the XB-tree
based holistic join. This is because path join is able to greatly reduce the actual
number of elements retrieved.

We observe that the underlying data storage structure of path-based ap-
proach has an direct effect on the query performance. For queries Q4 and Q5,
the I/O costs are smaller than the number of elements accessed in path-based

46 Hanyu Li, Mong Li Lee, and Wynne Hsu

(a) Elements Accessed (b) I/O Cost

Fig. 5. Queries with Structural Patterns Only

approach (see Figure5(a) and (b)). This is because the path-based approach
clusters the node records based on their paths. This further reduces the I/O cost
during data retrieval. In contrast, the I/O cost for XB-tree is determined by
the storage distribution of matching data. In the worst case, the elements to be
accessed are scattered over the entire list, leading to high I/O costs.

Effect of Parent-Child Relationships. We examine the effect of parent-child
relationship on query performance by replacing some ancestor-descendant edges
in queries Q1, Q3 and Q8 with parent-child edges. Figure 6 shows the results.

(a) Elements Accessed (b) I/O Cost

Fig. 6. Parent-Child Queries

The XB-tree based holistic join utilizes the same method to evaluate the
parent-child queries and ancestor-descendant queries. Therefore, XB-tree based
holistic join has the same evaluation performance for parent-child and ancestor-
descendant queries. To avoid incorrect result, each parent-child edge is (inexpen-
sively) verified before it is output.

In contrast, the proposed path-based approach checks for parent-child edges
during the path join. This task is achieved by looking up the encoding table (see
Figure 1(b)). In the case where the results of parent-child queries are subsets

A Path-Based Labeling Scheme for Efficient Structural Join 47

of the ancestor-descendant counterparts, the cost to evaluate queries may be
further reduced since fewer elements are involved in the node join. For example,
queries Q1pc and Q3pc have smaller result sets compared to Q1 and Q3 (see
Table 4) respectively. Thus Q1pc and Q3pc show better performance in Figure 6.

Effect of Value Predicates. Finally, we investigate how the proposed approach
and XB-tree perform for queries involving value predicates. We add value con-
straints on queries Q1, Q2, Q5 and Q6 respectively. The results are shown in
Figure 7.

(a) Elements Accessed (b) I/O Cost

Fig. 7. Queries with Value Predicates

When evaluating XML queries involving value predicates, the path-based
solution first carries out a path join to process the structural aspects of the
queries. To determine the final set of results, the subsequent node join will re-
trieve the value nodes and element nodes obtained by path join. Therefore, the
path-based solution needs to access more nodes to evaluate the value predicates
in the queries compared to the corresponding queries without value predicates.
This can be observed in Figure 7.

The XB-tree based holistic join solution treats value nodes the same way as
element nodes. The additional value predicates will incur more costs during the
retrieval of nodes. However, the value constraints may reduce the total number
of element nodes accessed. This is because the XB-tree approach employs the
XB-tree index to search for the matching nodes. Thus, it may skip some element
nodes that match the structural query pattern but not the value predicates.
Figure 7 shows that the addition of value predicates have different effects on
performances of Q5 and Q6.

Overall, the evaluation of structural patterns still dominates the query per-
formance even for queries involving value predicates. This is shown clearly in
Figure 7.

48 Hanyu Li, Mong Li Lee, and Wynne Hsu

6 Conclusion

In this paper, we have presented a new paradigm for processing structural join.
The proposed solution includes a path-based labeling scheme and a path join
algorithm that is able to compute the minimal sets of elements required for
the subsequent node join. Experimental results clearly show that the proposed
approach outperforms existing structural join methods for the following reasons:

1. The path join filters out nodes with path types that are not relevant to the
subsequent node join;

2. The cost of path join is marginal compared to node join in the majority of
the queries;

3. The element records are clustered according to the path types, which further
reduces the I/O cost during element retrieval.

References

1. http://www.ibiblio.org/xml/examples/shakespeare.
2. http://www.informatik.uni-trier.de/˜ley/db/.
3. http://monetdb.cwi.nl/.
4. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivas-

tava. Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In
Proceedings of ICDE, USA, 2002.

5. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML Pat-
tern Matching. In Proceedings of SIGMOD, USA, 2002.

6. Y. Chen, S. B. Davidson, and Y. Zheng. BLAS: An Efficient XPath Processing
System. In Proceedings of SIGMOD, France, 2004.

7. S-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient Structural
Joins on Indexed XML Documents. In Proceedings of VLDB, China, 2002.

8. E. Cohen, H. Kaplan, and T. Milo. Labelling Dynamic XML Tree. In Proceedings
of PODS, USA, 2002.

9. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast
Index for Semistructured Data. In Proceedings of VLDB, Italy, 2001.

10. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In Proceedings of VLDB, Greece, 1997.

11. H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing XML Data for
Efficient Structural Joins. In Proceedings of ICDE, India, 2003.

12. H. Jiang, W. Wang, and H. Lu. Holistic Twig Joins on Indexed XML Documents.
In Proceedings of VLDB, Germany, 2003.

13. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-
sions. In Proceedings of VLDB, Italy, 2001.

14. T. Milo and D. Suciu. Index Structures for Path Expressions. In Proceedings of
ICDT, Israel, 1999.

15. P. Rao and B. Moon. PRIX: Indexing and Querying XML Using Prüfer Sequences.
In Proceedings of ICDE, USA, 2004.

16. H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures. In Proceedings of SIGMOD, USA, 2003.

17. X. Wu, M. Lee, and W. Hsu. A Prime Number Labelling Scheme for Dynamic
Ordered XML Trees. In Proceedings of ICDE, USA, 2004.

The BIRD Numbering Scheme for XML
and Tree Databases –

Deciding and Reconstructing Tree Relations
Using Efficient Arithmetic Operations

Felix Weigel1, Klaus U. Schulz1, and Holger Meuss2

1 Centre for Information and Language Processing, University of Munich, Germany
{weigel,schulz}@cis.uni-muenchen.de

2 European Southern Observatory, Garching, Germany
hmeuss@eso.org

Abstract. This paper introduces the BIRD family of numbering schemes
for tree databases, which is based on a structural summary such as the
DataGuide. Given the BIRD IDs of two database nodes and the corre-
sponding nodes in the structural summary we decide the extended XPath
relations Child, Child+, Child∗, Following, NextSibling, NextSibling+,
NextSibling∗ for the nodes without access to the database. Similarly we
can reconstruct the parent node and neighbouring siblings of a given
node. All decision and reconstruction steps are based on simple arith-
metic operations. The BIRD scheme offers high expressivity and effi-
ciency paired with modest storage demands. Compared to other identi-
fication schemes with similar expressivity, BIRD performs best in terms
of both storage consumption and execution time, with experiments un-
derlining the crucial role of ID reconstruction in query evaluation. A
very attractive feature of the BIRD scheme is that all extended XPath
relations can be decided and reconstructed in constant time, i.e., inde-
pendent of tree position and distance of the nodes involved. All results
are shown to scale up to the multi-Gigabyte level.

1 Introduction

Query formalisms for tree databases and XML help to process data on the web,
to extract and integrate data from distinct repositories and sites [1], to organize
the exchange of commercial and scientific data, to access user-specified corporate
resources in LDAP directories, and to consult linguistic databases [2]. Query
formalisms for XML, representing a combination of information retrieval and
database techniques, are paramount in the future development of search engines
for the web and for digital libraries. In the meantime, an impressive number
of query formalisms for tree databases and XML have been proposed [3–5] and
many systems have been developed that offer distinct functionalities for querying
trees and XML [6–12].

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 49–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 Felix Weigel, Klaus U. Schulz, and Holger Meuss

In most of these cases, the underlying evaluation algorithms use a character-
istic set of fundamental operational steps that may be described as decision or
reconstruction of tree relations:

– Decision. Given two database nodes and a binary tree relation, decide if the
relation holds between the nodes.

– Reconstruction. Given a database node and a functional1 tree relation R,
compute the R-image of the node.

Unlike decision, where potential ancestors, siblings etc. to be checked are
already known, reconstruction starts from a given node and reproduces those
nodes in its tree neighbourhood having a specific relation to that node. Stan-
dard relations for describing unranked ordered trees are the “generalized XPath
axes” [4, 13]: Child, NextSibling , their inverses Parent, PreviousSibling, the
(reflexive-)transitive closures of these relations, as well as Following and its in-
verse. Parent, NextSibling and PreviousSibling are functional. Examples and de-
tails explaining the use of decision and reconstruction for evaluating generalized
XPath axes are given in Section 2.

Since most query formalisms and systems have to deal with large data sets,
the efficiency of the underlying evaluation algorithms and their basic opera-
tions is a major concern. We focus on the question how special conventions for
assigning unique identifiers to the nodes of a tree database (also called node
identification, tree encoding or numbering schemes) can help to solve decision
and reconstruction problems efficiently for the above generalized XPath axes
without access to the tree database, thus avoiding I/O-operations. Node identi-
fication schemes are largely complementary to other optimization techniques for
tree queries such as special-purpose index structures and join algorithms. Hence
the latter can benefit from intelligent identification schemes [9, 14–18].

For judging the quality of an identification scheme, four properties are essen-
tial:

– Expressivity. Which decision and reconstruction problems are supported by
the scheme, i.e., can be solved without database access for given node IDs?

– Runtime performance. How long does it take to solve the decision and
reconstruction problems that are supported? Are there any dependencies on
properties of the nodes involved, e.g., their depth or distance in the document
tree?

– Storage consumption. Which storage capabilities are needed for realizing
the identification scheme, given a large tree database?

– Robustness. Is it possible to add new nodes to the database without spoiling
the IDs already assigned to the existing parts of the documents?

Main Contribution. In this paper we suggest a new node identification scheme
for tree databases. Node identifiers are integers, called BIRD numbers (for Bal-
anced Index-based numbering scheme for Reconstruction and Decision). BIRD
1 A binary tree relation R is functional iff for every node n there exists at most one

node m such that R(n, m) holds. The node m is called the R-image of n.

The BIRD Numbering Scheme for XML and Tree Databases 51

numbering is compatible with document order in the sense that nodes visited
later in a pre-left traversal of the document tree have larger BIRD numbers,
and sparse in the sense that not all possible numbers are used in the BIRD
scheme. In addition, each node has an integer weight. Deciding (reconstructing)
tree relations boils down to trivial arithmetic tests (calculations) based on BIRD
numbers and weights.

As an illustration, consider the tree in Figure 1. Each

Fig. 1. BIRD numbers
and weights (in brackets)

node n is annotated with its BIRD number Id(n) (in
bold) and with its weight w(n) (in brackets). For any
descendant n′ of a node n we have Id(n) < Id(n′) <
Id(n) + w(n). Decision problems for any XPath axis
can be solved based on the following observations:
node n′ is a descendant of a given node n iff Id(n) =
Id(n′) − (Id(n′) mod w(n)) 2. To check if node n′ is
a following sibling of n we test if Id(n) < Id(n′) and
n, n′ have the same parent (parents are reconstructed,

s.b.). Node n′ follows n (in the sense of XPath’s following relation) iff Id(n′) ≥
Id(n) + w(n′). Furthermore, once we know the weight b of the unknown parent
of a given node n, we can reconstruct the BIRD number of the parent, which is
Id(n) − (Id(n) mod b). This briefly indicates how BIRD may be used to decide
generalized XPath axes for two given nodes and to partially reconstruct the
tree neighbourhood (here: the parent of a node). Reconstruction along other
functional axes is discussed below.

We shall see that the BIRD scheme supports decision (reconstruction) of
all (functional) generalized XPath axes. In this sense, BIRD offers “maximal”
expressivity. The triviality of the above arithmetic operations guarantees high
efficiency provided we have fast access to weights. To this end, BIRD weights are
stored in a tree-formed structural summary or index (e.g., the DataGuide [19] of
the database) which is held in main memory. Experiments (see Section 9) show
that BIRD outperforms other node identification schemes for tree databases:
using BIRD, basic decision and reconstruction steps are solved faster than with
other schemes. At the same time, storage requirements of BIRD are modest.

Further Contributions.
– We provide an abstract view on query formalisms for XML and tree databases

that helps to explain the role of decision and reconstruction operations for
tree relations. We show how to place existing systems and techniques in this
picture.

– We review various node identification schemes for tree databases known from
the literature and classify these schemes in terms of the decision and recon-
struction steps that are supported, taking into account a list of important
tree relations.

– We present the results of an extensive evaluation experiment, where vari-
ous node identification schemes have been applied to three XML databases
ranging from medium (157 Megabyte) to big (8.6 Gigabyte) size. The com-

2 For integers k, l (l �= 0), let k mod l denote the unique number m ≡ k modulo l s.th.
0 ≤ m < l.

52 Felix Weigel, Klaus U. Schulz, and Holger Meuss

putation time with BIRD is almost always faster than with other schemes,
up to two orders of magnitude. We also evaluate storage requirements.

The structure of the paper is as follows. Section 2 briefly explains the use of
decision and reconstruction operations in query formalisms for tree databases
and XML. Section 3 provides some formal background. Section 4 introduces the
family of BIRD numbering schemes. In Sections 5 and 6 we show that BIRD
numbering supports reconstruction and decision of all generalized XPath axes.
Section 7 reviews and analyzes other identification schemes for tree databases
suggested in the literature. Sections 8-11 present various experimental evaluation
results and compare BIRD and other schemes on this basis, with special attention
paid to the aforementioned four quality criteria. Due to space limitations, minor
formal issues are omitted and evaluation results are described in a condensed
way. See [20] for a full exposition and more detailed discussion.

2 Motivating Decision and Reconstruction

Looking at the core functionalities and abstracting from specific details, queries
against tree databases and XML are typically built using unary predicates (e.g.,
labeling conditions, name tests in XPath) and binary tree relations such as Child,
Child+, NextSibling etc.3 In what follows, we assume that the reader is familiar
with the above relations and other standard relations on trees such as, e.g.,
Parent, PreviousSibling, Following etc. [4, 13]. See [20] for details. Query plans
for evaluating such queries cover a spectrum of strategies with the following two
extreme positions:

1. We may use the unary conditions to fetch a set of candidate image nodes for
every single query node. In a second step, pairs of candidates from distinct
sets are combined using joins over the binary relations, which amounts to
solving a decision problem for the respective generalized XPath axis.

2. Since candidate sets for unselective unary predicates may be very large, we
may alternatively fetch only the candidate sets for highly restricted query
nodes (e.g., query leaves with selective keywords). From these nodes, candi-
dates for other query nodes are obtained via reconstruction.

Reconstruction steps are particularly interesting along binary relations R
that are functional (Parent, PreviousSibling, NextSibling , i-th-Child for i ≥ 1,
or any composition of these relations) or selective in the sense that database
nodes typically have a small set of possible R-successors (transitive or reflexive-
transitive closures of Parent, PreviousSibling, NextSibling). Given a query con-
taining a condition R(x, y) for such a relation R, if we already have a small
candidate set for x, then reconstruction along R efficiently computes all relevant
candidates for y. By contrast, if the unary conditions for y are weak, obtaining
a consistent candidate set for x and y via decision might be costly.
3 As usual, R+ and R∗ respectively denote the transitive and reflexive-transitive clo-

sure of the binary relation R. Similarly Ri denotes the i-fold composition R◦ · · · ◦R.

The BIRD Numbering Scheme for XML and Tree Databases 53

Different query plans which are more or less close to either of the above
positions are explained in [21]. The evaluation strategies described in [9, 16–
18, 22] follow the first paradigm, whereas [11, 12, 15, 23] adhere to the second
paradigm.

3 Formal Background

By a database, we mean a finite ordered rooted and labeled tree DB with non-
empty set of nodes, N (see [20] for a formal definition). In what follows, DB
denotes a database with set of nodes N and root nr. Σ denotes the alphabet of
labels. L : N → Σ assigns a unique label L(n) ∈ Σ to each node n ∈ N .

Definition 1. A structural summary for DB is a finite (not necessarily ordered)
rooted tree Ind with set of nodes M , together with a surjective mapping Φ : N →
M preserving the root and Child relationship in the obvious sense. Φ is called
the index mapping. For m ∈ M , the set Φ−1(m) is called the set of database
nodes with index node m.

A structural summary can be considered as a special kind of index struc-
ture. In what follows, by an index, we always mean a structural summary. The
DataGuide [19] (or 1-Index [24], being equivalent to the DataGuide for tree
databases) will serve as our standard example of a structural summary. To in-
troduce the DataGuide, the following notions are needed.

Definition 2. A string π ∈ Σ+ is called a label path of DB iff there exists a
sequence of nodes n0, n1, . . . , nk ∈ N (k ≥ 0) such that n0 = nr, 〈ni, ni+1〉 ∈
Child for 0 ≤ i < k and π = L(n0)L(n1) · · ·L(nk). In this situation, π is called
the label path of nk, we write π = lp(nk). The length of π is k. A label path
π of DB is maximal iff π is not a proper prefix of any label path � of DB. The
height of DB is the maximal length of a label path of DB.

Note that each label path π is non-empty and starts with the root label
L(nr). LP(DB) denotes the set of all label paths of the database DB.

Definition 3. The DataGuide of DB is the finite rooted unordered node-labeled
tree DG(DB) with set of nodes LP(DB) where L(nr) is the root of DG(DB),
� ∈ LP(DB) is a child of π ∈ LP(DB) iff there exists a label l ∈ Σ such that
� = πl, and the label of π ∈ LP(DB) is the last symbol of π.

DG(DB) represents a structural summary for DB with index mapping lp in
the sense of Definition 1.

Example 1. Figure 2 shows a database DB and its DataGuide DG(DB). Nodes
of DB and DG(DB) are labeled with numeric information for the child-balanced
numbering scheme that is introduced below.

Definition 4. A function f : N → IN is compatible with the document order
(i.e., preorder) <pre on DB iff m <pre n implies that f(m) < f(n), for all
m, n ∈ N .

54 Felix Weigel, Klaus U. Schulz, and Holger Meuss

4 The Family of BIRD Numbering Schemes

BIRD numbering schemes for the nodes of a database DB as introduced below
are always compatible with the document order in the sense of Definition 4.
When enumerating the nodes, for each node n ∈ N of the database we will need
a certain interval size, or weight, to number all nodes in the subtree with root
n. Our numbering schemes are based on a structural summary Ind of DB with
index mapping Φ (see Definition 1). We unify all weights needed for database
nodes with the same index node m, selecting the maximal interval size among
all members of the equivalence class Φ−1(m). This unified weight is attached to
the associated node m of the structural summary. When enumerating the nodes
of the database, we reserve this interval size for all subtrees rooted at any of the
nodes in Φ−1(m). Since in general not all these subtrees are of the same size,
some numbers remain unused in the enumeration4. Because of space limitations,
we only consider “balanced” variants of the BIRD scheme. Here the weights for
index nodes are further unified among all children (or grand-children, etc.) of a
given index node. Unbalanced variants have lower storage requirements, but are
less expressive.

4.1 Balanced Weights of Index Nodes

Let n denote a node of the database DB with root nr, let s ≥ 1. By the s-step
ancestor of n, we mean the ancestor of n that is reached in exactly s parent
steps. As a matter of fact, the s-step ancestor of n is defined if and only if n is a
node in depth s′ ≥ s, using the standard notion of the depth of a node in a tree.
Since balanced weights are based on maximal interval sizes of siblings, cousins,
grand-cousins, etc. in a tree, we need the following definition of s-equivalent
nodes. Basically, two nodes are 1-equivalent iff they are siblings, 2-equivalent iff
they are siblings or cousins (i.e. share the same grandparent) etc.

Definition 5. The equivalence relations ∼s (s ≥ 1) on the set of nodes N of a
given tree are inductively defined as follows:

1. for all n, n′ ∈ N : n ∼1 n′ iff the 1-step ancestors (i.e., parents) of n and n′

are defined and coincide.
2. Let s ≥ 1. For all n, n′ ∈ N : n ∼s+1 n′ iff n ∼s n′, or the s+1-step ancestors

of n and n′ are defined and coincide.

If n ∼s n′, we say that n and n′ are s-equivalent. By [n]s we mean the equivalence
class of node n w.r.t. ∼s.

Definition 6. Let Ind denote a structural summary for the database DB. Let
s ≥ 1. The s-balanced pre-weight w′

s(m) and the s-balanced weight ws(m) of
an index node m are recursively defined in a bottom-up manner as follows:

4 Unused numbers may also be reserved deliberately for future node insertions into
DB.

The BIRD Numbering Scheme for XML and Tree Databases 55

w′
s(m) :=

⎧⎨
⎩

ws(m1) · max{childCount(n) + 1 | n ∈ Φ−1(m)}
iff m has any child m1,

1 otherwise,

ws(m) := max{w′
s(m

′) | m ∼s m′}.

Here childCount(n) denotes the number of children of the database node n.

Note that the maximum operation in the definition of ws(m) leads to unified
weights for s-equivalent nodes (balancing). It also guarantees well-definedness
of pre-weights w′

s(m) since any two children m1 and m2 of m have the same
s-balanced weights ws(m1) = ws(m2). 1-balanced weights are also called child-
balanced weights. If s = h denotes the height of the database DB, then ws(m) is
called the totally balanced weight of the index node m.

Example 2. Consider the database DB with the DataGuide DG(DB) shown in
Figures 2 (a) and (b), respectively. Each node m of the DataGuide is annotated
with its child-balanced weight w1(m) and, for convenience, the pre-weight w′

1(m)
(in brackets). If m has children, we also depict the sequences of child labels of
all n ∈ Φ−1(m) (boxes). The maximal number of children in such a sequence
determines the number max{childCount(n) + 1 | n ∈ Φ−1(m)} used in Defini-
tion 6 (written next to each box). Note that only the weights w1(m) are stored
physically in the DataGuide.

To understand how the depicted pre-weights and weights in the DataGuide
are computed, consider the left-most path racbc in Figure 2 (b). The procedure
runs bottom-up and begins with the leaves racbc and racbb, whose pre-weight
is fixed to w′

1(racbc) = w′
1(racbb) = 1 by Definition 6. Taking the maximal pre-

weight among the two siblings we obtain w1(racbc) = w1(racbb) = 1. We next
consider index node racb, which is associated via Φ−1 with database nodes 111,
114, and 282 (larger numbers5 in Figure 2 (a)). Nodes 111 and 282 have no
children, but childCount(114) = 2 (length of the sequence cb in the bottom left
box). Therefore the child weight is multiplied by a factor 2 + 1 = 3 according to
Definition 6. The children of racb have weight 1, so the resulting pre-weight is
w′

1(racb) = 3. In the next step, the weight w1(racb) is computed: The bottom-up
algorithm has already computed the pre-weights for the siblings racc and racd,
which is 1 for leaves. The weight of each of the three siblings racb, racc, and racd
is the maximum of their pre-weights, i.e., 3. On the higher levels, pre-weights
and weights are computed in exactly the same way until we reach the root with
weight w(r) = 450.

In the remainder of the paper, Indws denotes the variant of the structural
summary Ind for the database DB where the s-balanced weight ws(m) is at-
tached to each index node m, as illustrated in Figure 2 (b) for the DataGuide.
Φ denotes the index mapping.

5 For convenience, the example refers to database nodes by their BIRD IDs, although
the computation of the IDs is explained later, in the next section.

56 Felix Weigel, Klaus U. Schulz, and Holger Meuss

4.2 Balanced Enumeration of Database Nodes

The s-balanced numbering scheme assigns an integer Ids(n) to each node n of
DB, given the weight-annotated index Indws . In the special case where s = h
represents the height of DB, the scheme is called the totally balanced numbering
scheme.

Definition 7. Let s ≥ 1. The BIRD number Ids(nr) for the root nr is any
multiple of ws(Φ(nr)). Let n denote an arbitrary node of DB. Let n1, . . . , nk

(k ≥ 1) denote the sequence of all children of n in the canonical left-to-right
ordering. Given the BIRD number Ids(n) for the parent node n and the balanced
child weight w = ws(Φ(n1)) = . . . = ws(Φ(nk)), the BIRD number Ids(n1) for
the first child n1 is the smallest multiple of w larger than Ids(n). The BIRD
number for the i-th child ni for 2 ≤ i ≤ k is Ids(ni) := Ids(n1) + (i − 1) · w.

Example 3. In Figure 2 (a), each database node n is annotated with Id1(n)
(large number). The enumeration started with 0 for the root node, and went
top-down through the tree in the manner described above. Note that weights
for index nodes and identifiers of database node are defined in a way that all
node identifiers in the subtree of a node n are guaranteed to fall into the interval
[Ids(n), Ids(n) + ws(Φ(n))[. This important relation between weights of index
nodes and database node identifiers is established in Proposition 2. The upper
bound of the interval of each node is denoted with the small numbers in brackets
in Figure 2 (a). Note that only IDs are stored physically in the database.

Proposition 1. Let s ≥ 1. The mapping Ids is injective and compatible with the
document order. Regardless of the initial assignment Ids(nr) for the root node
nr, for each node n ∈ N we have Ids(n) mod ws(Φ(n)) = 0.

Proposition 2. Let s ≥ 1. Let n be a node of DB, let n1, . . . , nk denote the
sequence of all children of n in the canonical left-to-right ordering. Let w :=
ws(Φ(n1)) = . . . = ws(Φ(nk)). Then Ids(n) < Ids(n1) < . . . < Ids(nk) <
Ids(nk) + w ≤ Ids(n) + ws(Φ(n)).

5 Reconstructing the Tree Structure

We discuss how parts of the tree structure of the database can be reconstructed
without accessing the database, given the number of a node and the correspond-
ing index node with its weight. As before, DB denotes a database and Ind denotes
a structural summary for DB with index mapping Φ.

Lemma 1. [Reconstruction of parents/ancestors, i-th child, i-th left/right sib-
ling] Let s, i ≥ 1. Assume that for some database node n we are given its BIRD
number Ids(n) and the index node m := Φ(n). Then, using Indws we may solve
the following tasks without access to DB:

The BIRD Numbering Scheme for XML and Tree Databases 57

Fig. 2. Child-balanced numbering scheme. (a) Database DB. Large numbers denote
child-balanced BIRD IDs; small numbers in brackets denote upper interval bounds.
(b) DataGuide for DB. Large numbers denote child-balanced weights; small numbers
in brackets denote pre-weights. For each non-leaf node m of DG(DB), the number
max{childCount(n) + 1 | n ∈ Φ−1(m)} is indicated (cf. Definition 6), next to the child
labels of all n ∈ Φ−1(m) (boxes). Only IDs and weights are stored physically

1. Decide if there exists an ancestor n′ of n that is reached from n with exactly
(at least) i parent steps. In the affirmative case, compute the number Ids(n′)
and the index node m′ := Φ(n′) corresponding to n′.

2. Compute the number Ids(ni) of the i-th child ni of n, assuming that this
child exists.

3. Decide if n has exactly (at least) i siblings that precede n in the left-to-right
ordering. If n has at least i preceding siblings, compute the number Ids(ni)
of the i-th preceding sibling ni of n.

4. Compute the number Ids(ni) of the i-th right sibling ni of n, assuming that
this sibling exists.

Proof. 1. Obviously, n has an ancestor n′ reached in exactly i parent steps iff
m := Φ(n) has such an ancestor, m′. Using Indws we may decide this question,
finding m′ in the affirmative case. By Proposition 1, Ids(n′) is a multiple of
ws(m′). By Proposition 2, Ids(n′) is the greatest multiple of ws(m′) smaller
than Ids(n).

58 Felix Weigel, Klaus U. Schulz, and Holger Meuss

2. Using Indws we fetch the weight w = ws(m′) of the children m′ of m,
which are assumed to exist. By definition, Ids(n1) is the smallest multiple of w
larger than Ids(n), and for i > 1 we have Ids(ni) = Ids(n1) + w(i − 1).

3. We may assume that n has a parent node n′. Let Ids(n′) denote its number,
calculated as described in 1. Let w = ws(m). By Proposition 2, n has at least i
preceding siblings iff Ids(n′) < Ids(n)− i ·w. From Definition 7 it follows that n
has exactly i preceding siblings iff Ids(n)− (i + 1) ·w ≤ Ids(n′) < Ids(n)− i ·w.
If the i-th preceding sibling exists, it has the number Ids(n) − i · w.

4. Similar. ��
The totally balanced scheme (where s = h, the height of the database) has a

number of special features that lead to stronger statements and refinements of
Propositions 1 and 2 and Lemma 1. See [20] for details.

6 Deciding Generalized XPath Relations

Let R be any of the “generalized XPath axes” Child, Child∗, Child+, NextSibling ,
NextSibling∗, NextSibling+, and Following. For two nodes n and n′ of the
database we write DB |= R(n, n′) iff the relation R holds in DB between n and
n′ (e.g., DB |= Child(n, n′) iff n′ is a child of n). As before we fix a structural
summary Indws with index mapping Φ.

Lemma 2. [Deciding generalized XPath axes] Let s ≥ 1. Assume we are given

– the number Ids(n) of the database node n,
– the index node m = Φ(n) corresponding to n,
– the number Ids(n′) of a second database node n′.

Let R be any of the aforementioned relations. Then, using Indws we may decide
if DB |= R(n, n′) (or if DB |= R(n′, n)) without access to the database DB.

Proof. See Table 1. ��
For the sake of completeness, we mention some other problems that may be

decided with similar methods. Proofs are simple.

Lemma 3. [Deciding proximity relations] Let s, i ≥ 1. Assume we are given the
number Ids(n) of the database node n, the index node m = Φ(n), and the number
Ids(n′) of a second node n′ ∈ N . Then, using Indws we may decide the following
questions without access to the database DB:

1. DB
?|= Parenti(n, n′)

2. DB
?|= PreviousSiblingi(n, n′)

3. DB
?|= NextSibling i(n, n′)

The BIRD Numbering Scheme for XML and Tree Databases 59

Table 1. Proof for Lemma 2. Relations decidable using any s-balanced BIRD scheme
with s ≥ 1. Given the BIRD numbers Ids(n) and Ids(n

′) of two database nodes n, n′ ∈
DB as well as the index node m = Φ(n) holding the weight corresponding to n, all
relations are decidable without access to the database. Corresponding XPath axes are
given with n as context node. For example, Child(n′, n) means n is a child of n′,
corresponding to the parent axis. For further notation details, see Lemma 2

DB |= Child(n, n′)
child

We check if m has any child, say, m′, using Indws . In the
negative case, n′ is not a child of n. In the positive case
let w = ws(m

′). Then DB |= Child(n, n′) iff Ids(n
′)

is a multiple of w and Ids(n) < Ids(n
′) < Ids(n) +

ws(m). The numbers ws(m
′) and ws(m) are obtained

from Indws .

DB |= Child+(n, n′)
descendant

We retrieve ws(m) using Indws . Then DB |=
Child+(n, n′) iff Ids(n) < Ids(n

′) < Ids(n) + ws(m).

DB |= Child∗(n, n′)
descendant-or-self

The relation holds iff DB |= Child+(n, n′) or n = n′.

DB |= Child(n′, n)
parent

We proceed as in Lemma 1, 1. with i = 1 and compare
the resulting BIRD number to n′.

DB |= Child+(n′, n)
ancestor

We iterate the procedure described in Lemma 1 for i =
1 until reaching either n′ (positive result) or a node n′′

where Ids(n
′′) < Ids(n

′) (negative result).

DB |= Child∗(n′, n)
ancestor-or-self

The relation holds iff DB |= Child+(n′, n) or n = n′.

DB |= NextSibling(n, n′) We obtain ws(m) and m’s parent m′′ from Indws and
compute the number Ids(n

′′) of the parent n′′ of n in
DB (cf. Lemma 1, 1.). DB |= NextSibling(n, n′) holds
iff Ids(n

′) = Ids(n) + ws(m) and Ids(n
′) < Ids(n

′′) +
ws(m

′′).

DB |= NextSibling+(n, n′)
following-sibling

We obtain ws(m), m′′ and Ids(n
′′) as above (cf. DB |=

NextSibling(n, n′)). DB |= NextSibling+(n, n′) holds
iff Ids(n

′) − Ids(n) is positive and a multiple of ws(m)
and if Ids(n

′) < Ids(n
′′) + ws(m

′′).

DB |= NextSibling∗(n, n′) The relation holds iff DB |= NextSibling+(n, n′) or n =
n′.

DB |= NextSibling(n′, n) We proceed as in Lemma 1, 3. with i = 1 and compare
the resulting BIRD number to n′.

DB |= NextSibling+(n′, n)
preceding-sibling

We obtain ws(m) and m’s parent m′′ from Indws and
compute the number Ids(n

′′) of the parent n′′ of n in
DB (cf. Lemma 1). DB |= NextSibling+(n′, n) holds iff
Ids(n)−Ids(n

′) is positive and a multiple of ws(m) and
if Ids(n

′′) < Ids(n
′).

DB |= NextSibling∗(n′, n) The relation holds iff DB |= NextSibling+(n′, n) or n =
n′.

60 Felix Weigel, Klaus U. Schulz, and Holger Meuss

Table 1. (Continued)

DB |= Following(n, n′)
following

The relation holds iff Ids(n) + ws(m) ≤ Ids(n
′), by

Propositions 1 and 2. The weight ws(m) is obtained
from Indws .

DB |= Following(n′, n)
preceding

The relation holds iff Ids(n
′) < Ids(n) and n′ is not

an ancestor of n. The latter problem is decided as de-
scribed above (cf. DB |= Child+(n′, n)/ancestor).

7 Positioning BIRD
and Other Node Identification Schemes

Node ID schemes can be classified along several dimensions. Number-based
schemes use integers to identify nodes, whereas path-based schemes encode the se-
quence of horizontal positions of ancestors among their respective siblings in IDs
of varying length. Many schemes use a sparse ID set: the ID space is not contigu-
ous and contains unused IDs, which helps to cope with limited node insertions
without reassigning node IDs. Number-based schemes follow either a depth-first
or breadth-first traversal of the document tree. In a multiplier-driven scheme, de-
cision and reconstruction steps are reduced to simple arithmetic computations by
only assigning multiples of a certain basic weight as node IDs. Finally, some ID
schemes are DataGuide-based: they extract path-related information and store
it in a DataGuide [19] for use during reconstruction or decision. In this ter-
minology, BIRD represents a number-based multiplier-driven DataGuide-based
scheme with sparse ID set.

An example for path-based ID schemes is Dewey Order [23]. Since offsets
in paths are independent of each other, Dewey Order supports updates where
renumbering is restricted to the descendants and following siblings of the node
being inserted [23]. The Dewey-based ORDPATH scheme [25] uses skew binary
encodings privileging smaller offset numbers to reduce storage. For reconstruc-
tion, the encoded ORDPATH IDs are parsed and split into their offset com-
ponents. Removing the last offset is equivalent to going up one level. All path
relations are decided by bitwise comparison of the encoded IDs. However, IDs
must be decoded into their offset components first in order to find the component
boundaries in the bit string. [25] describes an update mechanism for ORDPATH
which reserves unused IDs for future insertions at any position in the docu-
ment tree. ORDPATH is the only known scheme to allow for arbitrary updates
without changing any existing ID. However, when using this update mechanism,
ORDPATH cannot decide the NextSibling relation, and reconstruction of sibling
or child nodes is no longer possible.

Another path-based scheme was proposed in [15]: binary Path Identifiers
(PIDs) encode complete root paths as sequences of offsets representing relative
positions among children with the same label. To save space, offsets for children
which do not have any sibling with the same label are not encoded. Information
about which path steps are skipped this way is stored in a DataGuide. Compared

The BIRD Numbering Scheme for XML and Tree Databases 61

to ORDPATHs, PIDs facilitate reconstruction by storing the number of bits
used to encode a given offset in the corresponding DataGuide node. Updates in
PID are not supported, but only a local renaming of node IDs is necessary if
new nodes are inserted. The PID scheme is the least expressive scheme among
those supporting both path reconstruction and decision, but as our experiments
showed, its node IDs are the smallest in size.

Virtual Nodes [14] is the only number-based scheme identifying nodes by
their breadth-first rank. It uses a sparse ID set: all inner nodes are treated as
if they had exactly k children. This means that many IDs are reserved for so-
called virtual nodes which do not exist physically in the document tree. This
leads to a significantly higher space consumption compared to other schemes
(see Section 9). On the other hand, the resulting multiplier-driven scheme needs
only simple arithmetic operations to decide tree relations and to reconstruct
ancestors or siblings of a node.

Several number-based node identification schemes have been proposed that
support only path decision: node IDs are pairs 〈pre, post〉 consisting of the
node’s pre- and postorder ranks. Simple comparison operations on the interval
[pre, post] decide the Child+ and Child∗ relations [26]. [22] shows how to decide
Following and After. The paper also describes how XPath Accelerator combines
the pre-/postorder encoding with appropriate index structures embedded into
a relational system to decide the remaining XPath axes. A related scheme is
the extended preorder [9, 16], whose IDs are pairs 〈pre, size〉 where pre is the
node’s preorder rank and size is an integer equal to or greater than the number
of descendants of that node.

8 Expressivity Comparison

Table 2. Expressivity of ID schemes

scheme path decision path reconst.
BIRD • • • • • • • 2 • 2 •
ORDPATH • • • • • • •
(non-updatable) • • • • • • • 2 • 2 •
Virtual Nodes • • • • • 2 • 2 •
PID • • • •
pre-/postorder 1 • • • •
interval encod. 1 • • •
preorder • •

C
hi
ld
i (m

,n
)

C
hi
ld
+ (m

,n
)

N
ex

tS
ib
lin

g
i (m

,n
)

N
ex

tS
ib
lin

g
+ (m

,n
)

Fo
llo

w
in
g(

m
,n

, i
)

Fo
llo

w
in
g(

m
,n

)

N
ex

tI
nD

oc
O
rd

er
i (m

,n
)

N
ex

tI
nD

oc
O
rd

er
+ (m

,n
)

pa
re
nt
i (n

)

j-t
h-
ch

ild
(n

)

pr
ev

Si
bl
in
g
i (n

)

ne
xt
Si
bl
in
g
i (n

)

i-t
h-
co

m
m
on

A
nc

(m
,n

)

• supported 1 requires level
2 supported, but may not exist physically

The expressivity of the various ID
schemes is described in Table 2: A bul-
let in a cell indicates that the scheme
in that row supports the evaluation
of the tree relation in that column
without access to any database table.
Table 2 is divided into node identi-
fication schemes supporting path re-
construction (the first five rows) and
those supporting decision only. Num-
bers in the table cells describe the
following restrictions: (1) Reconstruc-
tion along forward axes, i.e., of chil-
dren or right siblings, is hypotheti-
cal in the sense that the IDs obtained
may not correspond to actual nodes

of the database tree. (2) For pre-/postorder encoding, the child decision prob-
lem can only be solved with additional information about the node level. In the

62 Felix Weigel, Klaus U. Schulz, and Holger Meuss

reconstruction part of Table 2 (right-hand side), j-th-child(n) denotes the j-th
child of n in left-to-right sibling order, and i-th-commonAnc(m, n) the i-th com-
mon ancestor of m and n (bottom-up). All decision results mentioned also hold
for the corresponding reverse axes.

BIRD, ORDPATH and Virtual Nodes support most decision problems. ORD-
PATH cannot decide horizontal proximity (for instance, following-
sibling::*[1] in XPath) in its original (updatable) version. Virtual Nodes
decides order among siblings, but not the more general NextInDocOrder and
Following relations. BIRD, ORDPATH and Virtual Nodes have roughly the same
expressivity in the reconstruction part, although ORDPATH cannot reconstruct
siblings in its original form.

9 Efficiency Comparison

Table 3. Document collections

name XML size # nodes # label paths depth

DBLP 157 MB 5,390,160 129 7
XMark 1,145 MB 20,532,979 549 13
IMDb 8,633 MB 83,404,825 276 5

We evaluated four different identifica-
tion schemes, namely BIRD (child-ba-
lanced, i.e., s = 1), ORDPATH [25]
(encoded with max. 9 bits for length
and max. 20 bits for offset compo-
nents), Virtual Nodes [14] and PID

[15]. We applied each scheme to the first two document collections listed in Ta-
ble 3, which differ considerably w.r.t. size and structural characteristics. All tests
were carried out sequentially on an i686 computer with AMD Athlon XP 2600+
CPU running at 2.1 GHz with 256 kB cache. Further details of the experimental
setting and a more detailed analysis can be found in [20].

Reconstruction. Figures 3 and 4 plot the computation time needed for various
reconstruction problems on the DBLP and the XMark collection. Schemes were
tested with the same set of synthetically generated problems. Since the speed of
individual operations cannot be measured with sufficient confidence, the figures
represent the accumulated time (in milliseconds) needed for 50,000 repetitions
of each decision or reconstruction. The figures subsume all necessary operations
including, e.g., DataGuide accesses for BIRD or PID and ID comparison during
decision.

Figure 3 shows the time needed to reconstruct the parents of nodes at dif-
ferent levels. For DBLP (left-hand side) and XMark (right-hand side), PID is
almost as fast as BIRD, whereas ORDPATH and Virtual Nodes are slower by
at least a factor 4. On XMark, the difference between BIRD and ORDPATH is
up to one order of magnitude. Obviously the performance of both BIRD and
PID is independent of the level of the context node. For ORDPATH and Virtual
Nodes, the computation time grows with the depth of the context node. Figure 4
illustrates the orthogonal situation: here the parenti(n) relation is reconstructed
from context nodes at a fixed depth in the tree (level 7 for DBLP, 13 for XMark),
with varying distance i. Again, BIRD and PID are much faster than ORDPATH
and Virtual Nodes.

The BIRD Numbering Scheme for XML and Tree Databases 63

Fig. 3. Reconstructing ancestors from varying levels

Fig. 4. Reconstructing ancestors in varying proximity

Decision. Results for decision problems [20] show the efficiency gain of BIRD
even stronger (up to two orders of magnitude compared to ORDPATH), but are
not included here due to space constraints.

Runtime Performance for Tree Queries. To quantify how much the differences in
decision and reconstruction speed just observed affect the overall performance
for entire tree queries, we evaluated four sample queries against the XMark
collection and another four againt DBLP, using the same schemes as in the
previous section. To avoid artefacts due to file system cache effects, the best and
the worst result of six consecutive iterations of each query were discarded. The
remaining four iterations of the same query were then averaged in Table 4. Each
tree query was executed using three different path join strategies determining the
use of reconstruction (ALWAYS, NEVER, only FIRST child of a given branching
node). A detailed description of these join algorithms and their impact on query
evaluation time is found in [20].

The following key results sum up the outcome of these experiments: (1) The
BIRD scheme performs best for virtually all queries and path join strategies on
XMark. (2) Reconstruction is of paramount importance to efficient query eval-
uation because it saves ID fetching and comparison (ALWAYS versus NEVER
in Table 4). Further experiments [20] show also that (3) inefficiencient ID com-
parisons (e.g. due to 128-bit IDs) can spoil the performance gained by ID recon-
struction and decision; (4) ID schemes preserving document order benefit greatly
from path join optimizations.

64 Felix Weigel, Klaus U. Schulz, and Holger Meuss

Table 4. Performance (avg,ms) for queries against DBLP (left) and XMark (right)

Table 5. Storage consumption for DBLP(left) and XMark(right)

scheme
ID size (bits) total storage (MB)

min.max.avg.
var ID size fixed ID size
abs % pre abs % pre

BIRD 1 37 36 25 170 25 161
ORDPATH 2 53 37 26 186 36 240
(non-dyn) 2 52 36 25 179 35 233
Virtual N. 1 95 37 25 174 64 413
PID 1 28 21 14 99 19 122
preorder 1 23 21 14 100 15 100

scheme
ID size (bits) total storage (MB)

min.max.avg.
var ID size fixed ID size
abs % pre abs % pre

BIRD 1 44 43 113 188 113 177
ORDPATH 2 86 48 124 207 221 345
(non-dyn) 2 77 43 111 185 198 309
Virtual N. 1 198 81 210 350 508 794
PID 1 29 20 54 90 74 116
preorder 1 25 23 60 100 64 100

10 Storage Consumption Comparison

The storage consumption of various identification schemes on DBLP and XMark
are given in Table 5. The first three columns after the scheme name contain the
minimum, maximum and average number of bits used for a single ID, respec-
tively. The remaining columns list the storage needed for all IDs together, both
as an absolute value in MB in columns 5, 7, and relative to the corresponding
result obtained for the preorder scheme (columns 6, 8). In a first calculation we
sum up the exact bit counts needed for all IDs, assuming that IDs can be stored
with variable size (columns 5, 6). On the other hand, it may be more realistic to
assume that when stored in the database, all IDs assigned to nodes in the same
document collection take up the same space. The total storage taken up by such
fixed-size IDs appears in columns 7, 8. The BIRD scheme almost always takes
up considerably less space than ORDPATH and especially Virtual Nodes, the
two schemes which are closest to BIRD in terms of expressivity (see Section 7).
When assigning fixed-size IDs, BIRD reduces the space consumption by nearly
a factor 2 for ORDPATH and between 2.2 and 4.5 for Virtual Nodes.

11 Robustness Comparison

Among all identification schemes discussed here, only ORDPATH supports un-
limited updates. BIRD, PID and Virtual Nodes only allow for a limited number

The BIRD Numbering Scheme for XML and Tree Databases 65

of node insertions, until an overflow occurs when a node has more children than
its ID range allows for. If this happens, a global (for BIRD and Virtual Nodes)
or local (for PID) reallocation of IDs is necessary.

In some scenarios, updates occur either rarely (like in static databases con-
taining, e.g., medical, juridical, geographical or historical information), or new
data are first collected and then added to the database in a bulk update once
in a while (e.g., in digital archives, linguistic corpora, encyclopedias and dic-
tionaries, product catalogues, or digital libraries). Yet for other scenarios the
robustness of an ID scheme against node insertions is an important requirement.
We empirically tested the robustness of BIRD IDs using a large real-world data
set.

We indexed the 8.6 GB IMDb collection

Fig. 5. Robustness of BIRD IDs
for IMDb. Dashed line, BIRD; solid
line, extra-sparse BIRD

([27], nearly 2,000,000 documents converted
to XML) in chunks of 100,000 documents, re-
serving extra IDs for 100 potential child node
insertions below any overflowing node during
the weight calculation. Figure 5 (solid line,
“BIRD+100”) illustrates how often at least
one weight in the DataGuide was changed
while adding 100,000 documents, thus caus-
ing a reindexing of the entire collection. The
two peaks at the beginning show that BIRD
weights were reasonably stable after indexing
the first 400,000 documents, or 20% of the
data. In the sequel, only one additional weight update is necessary before adding
1,300,000 documents without any overflow. Note that reserving extra IDs to in-
crease the robustness of the scheme is not expensive in terms of storage: the
greatest BIRD ID in the extra-sparse encoding (“BIRD + 100”, at most 54 bits
per ID compared to 45 bits for ordinary BIRD) still occupies far less than 64
bits, a critical boundary in our runtime experiments.

We are currently looking for variants that make BIRD IDs even more robust
against updates. [20] outlines the layered BIRD scheme that allows to construct
hierarchical BIRD IDs similar to Dewey IDs [23] and ORDPATH [25]. The layers
of an ID can be adapted to specific needs and do not have to follow the tree levels
as in Dewey Order and ORDPATH. Layers can be introduced at critical positions
in the underlying DataGuide and allow unlimited node insertions directly below
a layer boundary. In the extreme case, there are as many layers as levels in the
tree, allowing for unlimited updates in general. In this situation BIRD coincides
with ORDPATH. All decision and reconstruction operations are easily adapted
to the layered variant. First experiments with layered BIRD are promising and
prove that robustness is not necessarily conflicting with space or time efficiency.

12 Conclusion

In this paper we introduced the BIRD family of tree numbering schemes based
on structural summaries that allows to decide and reconstruct tree relations ef-

66 Felix Weigel, Klaus U. Schulz, and Holger Meuss

ficiently with simple arithmetic operations. We showed that decision and recon-
struction of tree relations is a central building block of most query strategies. We
analyzed and compared properties and expressivity of other node identification
schemes and identified a trade-off between evaluation time, storage consumption
and expressivity, where BIRD appears to be a favourable choice. We presented
the results of extensive tests, proving that BIRD is almost always faster than
ID schemes of comparable expressivity (up to two orders of magnitude), while
being reasonably small in size.

As an application of this work, we are currently integrating BIRD with a
purely relational retrieval system for conjunctive XML queries. Future work may
include a generalization of the notion of structural summaries in order to reduce
the storage consumption of BIRD IDs further. Besides, the update mechanism
mentioned above (layered BIRD scheme) needs to be elaborated in detail.

Acknowledgements

We would like to thank Gerhard Weikum and Ralf Schenkel (MPI Saarbrücken)
for their XML convertor for the IMDb collection, and Sebastian Hick (CIS,
University of Munich) for helpful comments on the experiments.

References

1. Gottlob, G., Koch, C.: Monadic Datalog and the Expressive Power of Web Infor-
mation Extraction Languages. Journal of the ACM 51 (2004) 74–113

2. University of Pennsylvania: The Penn Treebank Project. (Available at
www.cis.upenn.edu/~treebank/home.html)

3. Boag, S., Chamberlin, D., , Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML Query Language. W3C Working Draft (2004)

4. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J.,
Siméon, J.: XML Path Language (XPath) 2.0. W3C Working Draft (2004)

5. Schlieder, T., Naumann, F.: Approximate tree embedding for querying xml data.
In: Proc. ACM SIGIR Workshop On XML and Information Retrieval. (2002)

6. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A Database
Management System for Semistructured Data. SIGMOD Record 26 (1997) 54–66

7. Baeza-Yates, R.A., Navarro, G.: XQL and proximal nodes. Journal American So-
ciety for Information Science and Technology (JASIST) 53 (2002) 504–514

8. Kanne, C.C., Moerkotte, G.: Efficient Storage of XML Data. In: Proc. 16th Int.
Conf. on Data Engineering (ICDE). (2000) 198

9. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.
In: Proc. 27th Int. Conf. on Very Large Data Bases (VLDB). (2001) 361–370

10. Grust, T., Sakr, S., Teubner, J.: XQuery on SQL Hosts. In: Proc. 30th Int. Conf.
on Very Large Data Bases (VLDB). (2004) 252–263

11. Pal, S., et al.: Indexing XML Data Stored in a Relational Database. In: Proc. 30th
Int. Conf. on Very Large Data Bases (VLDB). (2004) 1134–1145

12. Meuss, H., Schulz, K.U., Weigel, F., et al.: Visual Exploration and Retrieval of XML
Document Collections with the Generic System X2. Journ. Dig. Lib. 5 (2005) 1–70

The BIRD Numbering Scheme for XML and Tree Databases 67

13. Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive Queries over Trees. In: Proc. 23rd
ACM Symposium on Principles of Database Systems (PODS). (2004) 189–200

14. Lee, Y.K., Yoo, S.J., Yoon, K., Berra, P.B.: Index structures for structured docu-
ments. In: Proc. 1st ACM Int. Conf. on Digital Libraries. (1996) 91–99

15. Bremer, J.M., Gertz, M.: An Efficient XML Node Identification and Indexing
Scheme. Technical Report CSE-2003-04, University of California at Davis (2003)

16. Zhang, C., et al.: On Supporting Containment Queries in Relational Database
Management Systems. In: Proc. 20th ACM SIGMOD Conference. (2001) 425–436

17. Al-Khalifa, S., et al.: Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. In: Proc. 18th Int. Conf. on Data Engineering (ICDE). (2002) 141–152

18. Chien, S.Y., Vagena, Z., Zhang, D., Tsotras, V.J.: Efficient Structural Joins on
Indexed XML Documents. In: Proc. 28th Int. Conf. on Very Large Data Bases.
(2002) 263–274

19. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In: Proc. 23rd VLDB Conf. (1997) 436–445

20. Weigel, F., Schulz, K.U., Meuss, H.: The BIRD Numbering Scheme for XML and
Tree Databases. Technical report, CIS, University of Munich (2005)
http://www.cis.uni-muenchen.de/~weigel/Literatur/weigel05birdtech.pdf.

21. McHugh, J., Widom, J., Abiteboul, S., Luo, Q., Rajamaran, A.: Indexing
Semistructured Data. Technical report, Stanford University, Computer Science
Dept. (1998)

22. Grust, T.: Accelerating XPath location steps. In: Proc. 21st ACM SIGMOD Int.
Conf. on Management of Data. (2002) 109–120

23. Tatarinov, I., et al.: Storing and Querying Ordered XML Using a Relational
Database System. In: Proc. 21st SIGMOD Int. Conf. on Management of Data.
(2002) 204–215

24. Milo, T., Suciu, D.: Index Structures for Path Expressions. In: Proc. 7th Int. Conf.
on Database Theory (ICDT). (1999) 277–295

25. O’Neil, P., et al.: ORDPATHs: Insert-Friendly XML Node Labels. In: Proc. 23rd
ACM SIGMOD Int. Conf. on Management of Data. (2004) 903–908

26. Dietz, P., Sleator, D.: Two Algorithms for Maintaining Order in a List. In: Proc.
19th ACM Symposium on Theory of Computing (STOC). (1987) 365–372

27. IMDb: Internet Movie Database. (Available at www.imdb.com)

Efficient Handling of Positional Predicates
Within XML Query Processing

Zografoula Vagena1, Nick Koudas2, Divesh Srivastava3, and Vassilis J. Tsotras1

1 UC Riverside
{foula,tsotras}@cs.ucr.edu

2 University of Toronto
koudas@cs.toronto.edu
3 AT&T Labs-Research

divesh@research.att.com

Abstract. The inherent order within the XML document-centric data
model is typically exposed through positional predicates defined over
the XPath navigation axes. Although processing algorithms for each axis
have already been proposed, the incorporation of positional predicates
in them has received very little attention. In this paper, we present tech-
niques that leverage the power of existing, state of the art methods, to
efficiently support positional predicates as well. Our preliminary experi-
mental comparisons with alternative approaches reveal the performance
benefits of the proposed techniques.

1 Introduction

XML is gradually becoming the standard for data sharing and information ex-
change among B2B and other applications over the Internet. Thanks to standard
specifications for web services (such as SOAP, WSDL, etc.), user programs can
receive requests for data (specified in XML) and return their answers tagged in
XML. In addition, via the use of specific query languages such as XPath [6] or
XQuery [7], users and applications can compose declarative specifications of their
interests, as well as filter and transform data items represented in XML. This
widespread acceptance and employment of XML, calls for novel data processing
techniques, pertaining to XML’s effective storage and retrieval. One key issue
in XML query processing is the effective support of the ordered model for data
and document representation that the language employs. Order is particularly
important in the document-centric view of the language as it enables expos-
ing the logical structure of the document. Popular XML query languages (e.g.,
XQuery [7] and XPath [6]) express order sensitive queries through the ability to
address parts of a document in a navigational fashion, based on the sequence of
nodes in the document tree.

Consider, for example, an XML database of journal articles. For each article
entry, the order in which its authors and its sections are listed is relevant. Infor-
mation extraction tools can take into consideration the tree structure and the
positional node order to extract the first two authors of each article, with the
following query:

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 68–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Handling of Positional Predicates Within XML Query Processing 69

//article/child::author[position()<=2]

Similarly, the section of an article immediately following the Related Work
section of the article can be extracted using the query:

//article/child::section[./child::title =
‘Related Work’]/following-sibling::section[1]

Supporting such ordered predicates is thus an important requirement for
XML query processing. In the current work we focus on the efficient processing
of positional predicates within the various XPath navigation axes.

Initial efforts [11, 14] investigated the extent to which relational database
technology can support order-based queries. These efforts have concluded that
although a relational database performs well in general, in many cases it needs to
be extended (i.e. new processing algorithms should be devised) to efficiently sup-
port general order-based queries. Although processing techniques that employ
direct navigation of the XML tree structure can be trivially adapted to identify
nodes that satisfy any positional predicate, recent works have shown that, in the
absence of those predicates, such navigational techniques are outperformed by
set-based approaches [4, 8, 16]. As a result, it would be beneficial if the latter
techniques could be extended to support positional predicates as well.

Set-based solutions transform axes predicates to value conditions and thus
reduce the navigation problem to a relational join computation (with the ad-
ditional requirement of producing the final output in a specific order). Such
techniques were originally proposed for queries where navigation is restricted to
the child or descendant axes ([4]). Very recently, set-based methods that take
into consideration other navigation axes have appeared ([12, 13, 15]). Moreover,
holistic solutions (i.e., where multiple steps are grouped and computed as a sin-
gle operator), have been shown to outperform step-by-step processing, as they
avoid unnecessary computations of intermediate results that do not participate
in the final answer of the query [8, 9, 15]. All these works introduce new, tree-
aware operators to speed up tree traversal, however, none of them considers the
existence of positional predicates.

Taking into consideration the abundance and efficiency of processing tech-
niques for the ordered axes, the aim of this paper is to investigate whether such
techniques can be modified or extended so as to handle positional predicates as
well. In the process, we came to the conclusion that, contrary to common belief,
efficient support of positional predicates is non-trivial. Furthermore, not all of
the above techniques are applicable when positional predicates are present.

Consider, for example, the Staircase Join [12] family of algorithms. Their
efficiency is attributed to the fact that while processing queries with navigation,
not all context nodes are needed in order to identify the result nodes. Con-
sider the document in Figure 1.a and assume that the descendant axis query:
a/descendant::* is invoked over this document (which finds all descendants of
context nodes a). Since the descendants of a particular document node x are also
descendants of any ancestor of x in the same document, only the context nodes
that do not have other context nodes as ancestors are necessary for answering

70 Zografoula Vagena et al.

Fig. 1. Inapplicability of Staircase Join in the Presence of Positional Predicates

this descendant axis query. In terms of the particular example, only the first
and third (in document order) context nodes that are labeled a are necessary,
while the second a can be safely discarded. Similar observations can be made for
the other axes as well (e.g. following, following-sibling etc).

By discarding unnecessary context nodes, one can save matching time from
the duplicate results that would otherwise be produced and subsequently be dis-
carded as superfluous. In Figure 1.a(i), if the second a node is not discarded,
the g and h nodes are produced twice. Instead, the Staircase Join involves a
first phase, where it prunes unnecessary context nodes, before performing the
actual matching with the appropriate input descendant streams. Figure 1.a(ii)
illustrates the matching process after the pruning phase (the result nodes are de-
picted in gray). Note that for the pruning process, the algorithm only considers:
(i) which is the axis involved in the query, and, (ii) the set of context nodes.

Assume now that the positional predicate [position() = 2] is added to the
descendant axis of the previous example. That is, the query requests only the
second descendants under the context nodes. In this case the pruning performed
by the Staircase Join is not applicable as it would result in false negatives. By
discarding the second a node in the first phase, one cannot identify the h node
that belongs to the result, as the second descendant of this a node. Preserving
only the first a node is not enough because h is not the second descendant of this
a. The situation is illustrated in Figure 1.b. While unnecessary context nodes
can still be pruned, to identify them, the actual matching over the input streams
has to be performed anyways. As a result, the optimization introduced by the
Staircase Join is inapplicable when positional predicates are present.

Efficient Handling of Positional Predicates Within XML Query Processing 71

In fact, there is a straightforward technique so that positional predicates can
be answered as well. In particular, we can: (a) identify all the matching com-
binations of context and result nodes that satisfy the axis predicate (using any
applicable processing algorithm), (b) group on the context nodes and sort each
such group on the result nodes, (c) filter from each group the pairs that satisfy
the numeric predicate while preserving the result nodes, and, (d) take the union
of the result nodes. However this straightforward solution, although acceptable,
might lead to unnecessary computation, as it incurs the overhead of identifying
context nodes that do not have any matching counterpart that also satisfies the
positional predicates. For example, assume the query a/child::b[4], where the
fourth b child of a nodes is requested. If in the document no a node has more
than three children, then this approach will incur a lot of unnecessary overhead.
The question is whether the ”useful” context nodes can be identified, prior to
performing all possible matchings. In this paper we will present algorithms that
can identify such useful context nodes by effectively maintaining appropriate
states of the computation. The contributions of this paper are summarized as:

1. We investigate the problem of supporting queries with positional predicates
over XML data. We extend existing state of the art processing algorithms
for each of the proposed navigation axes so as to effectively handle positional
predicates. To the best of our knowledge, this is the first work that provides
a complete, scalable, XML model-aware solution.

2. We target branched queries that may contain any number of axes of the
same type as well as their backward counterparts (e.g., descendant and
ancestor, or following-sibling and preceding-sibling etc.)

3. We present a preliminary comparison with (i) the naive solution which checks
positional predicates as a post-processing step, (ii) previous techniques that
leverage the relational engines to efficiently support tree shaped XML data,
and (iii) DOM based XPath query processors. The experimental evaluation
reveals the performance advantages of our solutions.

We proceed with Section 2 that provides necessary background while our
methods are described in Section 3. In Section 4 we experimentally investigate
the performance of the proposed solutions. Finally, Section 5 concludes the pa-
per.

2 Background

Ordered Model. In the data model employed by popular XML query languages
[6, 7], a document is represented as an ordered tree, where each node has a unique
ID. The document order is defined over all nodes and corresponds to the sequence
in which nodes occur within the pre-order traversal of the ordered tree [10].

Order Based Predicates. Positional predicates appear in XML query lan-
guages in the form of numeric predicates. A predicate, filters a sequence of
nodes with respect to an axis to produce a new sequence of the nodes for which
the predicate evaluates to true. Numeric predicates specifically take order into

72 Zografoula Vagena et al.

account and are of the form: position() op n, where position() returns the
position of the node within the axis node set, op is one of the operators =, <, >,
<=, >=, ! = and n is an integer. If a predicate expression evaluates to a number,
the result will be true if the number is equal to the context position, otherwise
it is false. Thus, a location path para[3] is equivalent to para[position()=3].
For ease of presentation we describe our techniques in terms of the = operator
while pointing out the necessary changes to support the other operators.

Document Representation. The approaches we are going to discuss in this
paper project the document into sequences of nodes (we call them element
lists from now on). There is one sequence per document tag, which maintains
all nodes with the same tag. Each node is augmented with information that
identifies its position within the XML tree. The position of a node is represented
with the triplet: (left, right, pright) where: (a) left and right are gen-
erated by counting tags from the beginning of the document until the start and
the end tags of the node are visited, respectively, and, (c) pright is the right
value of its parent node. Using this scheme, the relative positions between any
two nodes can be identified in constant time. A node y is a child of a node x
if the right value of x is equal to the pright value of y. Similarly, a node y is
following-sibling of a node x if the right value of x is smaller than the left
value of y and the pright value of x is equal to the pright value of y.

3 Algorithmic Approaches

We proceed with the description of our algorithms for supporting XML queries
with positional predicates. For the discussion we focus on the child and the
following-sibling axes, and their backward counterparts. The remaining axes
can be supported with trivial modifications to the proposed methods. For sim-
plicity we restrict the comparison operator to equality. Moreover, while our
algorithms follow a set-based evaluation, the results can be easily returned in
document order (or any other desired order) providing list-based semantics.

3.1 One-Step Queries

Such queries have the form: a/child::b[n] or a/following-sibling::b[n],
where n is a numerical value. The former query identifies the nth b child of
each a document node, while the latter query identifies the nth b sibling of each
a document node, which resides after that a in document order.

Child Axis. The optimal processing technique for one-step queries with child
axis (‘structural joins’) was presented in [4]. The input is provided in the form
of element lists (i.e. the element list of the a nodes and the element list of the
b nodes). Each list is sorted on the left value of the nodes it contains. The lists
for a, b are joined in a merge-like fashion. A stack Sa is employed to maintain
those a nodes that have been visited and whose descendants (and their children)
are currently being accessed. At all times during the execution of the algorithm,

Efficient Handling of Positional Predicates Within XML Query Processing 73

Fig. 2. Processing of positional predicates within one-step queries

each node in Sa is a descendant of the nodes below it in the stack. When a b
node is visited, the parent-child relationship, if any, is determined between that
node and the current top of Sa. If the accessed b node is not a descendant of the
current top of the stack, then it is guaranteed that the top of the stack will not
produce further matchings and can thus safely be removed from Sa. The process
is then resumed with the new top of the stack.

From the previous discussion it is obvious that in the absence of positional
predicates, the relationship between a specific pair of a and b nodes can be deter-
mined based solely on their node numberings; the stacks are useful to efficiently
identify relationships between sets of a and b nodes. When dealing with posi-
tional predicates, however, node numberings do not suffice to determine whether
a specific pair of a and b nodes satisfy a/child::b[3], for example. Additional
state needs to be maintained while processing the sets of a and b nodes to make
this inference.

For addressing positional predicates, we note that when a b node is accessed,
its a parent (if any) resides in the top of the stack. Moreover, a node a is
maintained in Sa until all its children are visited. Since such children are accessed
from their element list in document order, the stack provides the appropriate
means to keep track of the children nodes for each of the a nodes residing in Sa.
In order to achieve that, for each a element already in the stack, we maintain a
(child) counter. Each time a new b element is accessed and is determined to be
child of the current top of the stack, the corresponding counter is incremented.
The new value of the counter determines the participation of the b node in
the result. In particular, if this value equals to the numerical value n of the
positional predicate, the node participates in the result and is joined; otherwise
it is discarded. Figure 2.a illustrates the stack state after having accessed node
b5. At this point in the execution, the third child of node a1 and the second child
of node a2 have been accessed so far.

Following-Sibling Axis. An advantage of the child axis algorithm is that it
can perform the join in a single pass over the two input element lists. Very

74 Zografoula Vagena et al.

recently, novel merge-like algorithms with the same one-pass property over the
input element lists have been independently proposed for the following-sibling
axis as well [13, 15]. Here we extend the ideas summarized in [15] so as to support
positional predicates as well.

An important observation is that since the input is visited in document order,
the following-siblings for some a node occur after all its descendants have been
encountered. Equivalently, an a node has to be buffered until the following-
siblings of its descendants have been processed first. Moreover, an a node may
have other a nodes as following siblings. We call the a nodes that share the same
parent as “context-siblings”. Context-sibling nodes conceptually form a linked-
list, called the Context-Sibling List, or CSL in short, which is associated to
the parent node of the context-siblings. For example, Figure 2.b shows snapshots
of two CSLs, associated with parent nodes p, b1. New a nodes that are context-
siblings are appended at the end of their parent’s CSL. CSLs provide an effective
way to capture the following-sibling predicate: If a b node becomes a following-
sibling to the node at the end of a context-sibling list, it is also a following-sibling
to all other nodes currently in that list. There can be many CSLs at a given time
(up to the depth of the currently accessed context node in the document tree).

A stack keeps track of the existing CSLs. Each node in the stack is the
common parent of the nodes within the corresponding CSL. Moreover it is a
descendant of the nodes below it. When a node is removed from the top of
the stack (i.e. when all its children have been accessed), its corresponding CSL
(if any) is erased. One important point to note here is that although a stack
is employed for the processing of both the child and the following-sibling
axis, the contents of the stacks are very different for each algorithm. In particular
in the case of the child axis, stack entries are from the list of the context
nodes, while for the following-sibling axis stack entries represent parents of
the context nodes. The latter is possible because of the pright value that is
maintained in the positional representation of each document node.

When the following-sibling query contains a positional predicate, only those
following-siblings with position that satisfies the predicate should be joined.
Our solution is built on the properties: (i) a context element is accessed before
any of its following-siblings, (ii) it is maintained within its CSL, and (iii) its
following-siblings are accessed in document order. Therefore, a counter could be
maintained for each context element in a CSL, that keeps track of the number of
following-siblings that have already been identified with respect to this node. In
this case whenever a new following-sibling is accessed, the counters of all context
elements currently within the corresponding CSL would be incremented and only
those pairs (if any) that satisfy the numerical predicate would be returned.

Although the previous way of updating the counters is correct, it is not
optimal. For example, if there are N a’s and b’s that are all siblings of each
other, then this approach would take time O(N2) in the worst case for answer-
ing a/following-sibling::b[1], even though the output is only O(N). In order
to achieve optimality we propose a more complex way of updating the counters,
which divides the nodes that reside within a particular CSL into several parti-

Efficient Handling of Positional Predicates Within XML Query Processing 75

tions. We call those partitions predicate groups or PGs from now on. Each
PG maintains all the nodes whose counters have the same value (i.e. a nodes for
which the same number of following-sibling b nodes have been accessed). More-
over each PG is associated with a counter, which is the value of the counter of
each node within this PG. The values of those counters from the beginning to
the end of a particular CSL list follow a strictly descending order. Furthermore,
there exists a pointer from a PG pg1 to the PG whose counter has the largest
value that is smaller than the counter associated with pg1. Each such pointer
is associated with a value, which represents the difference of the values of the
counters associated with the two connected PGs. An example of this data struc-
ture is represented in Figure 2.b, which captures the state of the algorithm, after
node b4 has been accessed.

Using the above structure, only a constant number of actions have to be
performed for counter updates. In particular, when an a node is visited it is
appended within the PG that resides at the end of a’s associated CSL. When
a node b that is associated with a particular CSL is visited, the value of the
counter associated with the PG at the beginning of this CSL (we call this PG
pg1) is incremented by one. If no empty PG exists at the end of the CSL, a
new empty PG (pg2) is created at the end of this CSL and the PG that was
previously at the end of the CSL is set to point to pg2, with an associated value
of 1. If an empty PG pg3 exists in the end of the CSL, the value associated
with the pointer that points to this pg3 is incremented by one. Subsequently,
if the value of the counter associated with pg1 does not match the value of the
predicate the algorithm resumes with the next document node. Otherwise, the
node b is matched with the nodes in pg1 and the results are returned. At this
point the nodes of pg1 can be discarded as they are not going to create any
future results. The counter of the PG referenced by pg1 is set to the value of the
counter of PG minus the associated difference. The following theorem holds for
the correctness and performance of processing positional predicates for one step
queries (the pseudocode is provided in the appendix):

Theorem 1. Given a one step query T with an equality positional predicate,
a/axis::b[n], where axis can be following-sibling or child, which is in-
voked over a database D, the proposed processing of the intermediate state for
each algorithm correctly identifies all nodes that participate in answers for T
in D. Moreover, they have worst-case I/O and CPU time complexities linear to
the sum of the sizes of the input lists. Furthermore, the maximum space used is
O(h ∗ f), where h is the height of the XML data tree, and f is the maximum
fanout at any data tree node. ��
For the one step queries of the theorem, output size is bounded by the sum of the
sizes of the input lists. This is not the case for other operators like position() > 2.
In such cases, our algorithms can be modified to yield correct results with worst-
case I/O and CPU time complexities linear to the sum of the sizes of the input
lists and the output.

Similar buffering (of context nodes) can be performed for each of the re-
maining forward axes and hence the functionality of the counters can be easily

76 Zografoula Vagena et al.

realized for all forward axes. We thus proceed with our discussion of multi-step
queries by focusing on the following-sibling axis.

3.2 Multiple Step Queries with Following-Sibling Axes

Multiple-step queries involve many query nodes. Each node qi, may be connected
with zero or more other nodes through following-sibling axes. We call each
qi that is connected to one or more other nodes a step-parent from now on.
Such queries can be represented with tree structures whose vertices correspond
to query nodes and the edges correspond to the connecting following-sibling
axes.

One straightforward way to compute a multi-step query with positional pred-
icates, is to divide it into individual steps and use the techniques described in
Section 3.1. Nevertheless, this may lead to unnecessary processing of intermedi-
ate results. When no positional predicates are present, a more efficient approach
is to regard the whole query as a single operant and holistically compute the
results with a single pass over the input. The proposed algorithm traverses the
input in document order and attempts to identify the nodes that satisfy all the
predicates of the query at once.

Fig. 3. Processing of positional predicates within multiple-step queries

An important observation that the algorithm utilizes is that any result in-
stance involves only sibling nodes (i.e. nodes that have the same parent). For
each such sibling group a state structure is maintained, which encodes all partial
and total results that can be produced from this group with size proportional
to the size of the sibling group. The state structure consists of one CSL per step

Efficient Handling of Positional Predicates Within XML Query Processing 77

parent. The role of a CSL is similar with that in Section 3.1, i.e. to hold context-
siblings in document order. An element y within a CSL, maintains a reference
(the step-pointer) to the latest (in document order) element within the CSL
that corresponds to its query parent, with which y is matched. All elements from
the beginning of this CSL until the node referenced by the step-pointer of y
can be matched with y. At each point during the execution of the algorithm
multiple sibling groups (up to the height of the document tree) can be active
(i.e. some but not necessarily all of their nodes have been accessed). A stack is
utilized to keep track of all active sibling groups. An example of the state struc-
ture that is maintained is illustrated in Figure 3.a, where the state structure
after node d3 has been accessed is presented.

When positional predicates exist within the multi-step query, counters as-
sociated with context nodes within CSLs are also maintained. These counters
enable tracking of the following-siblings that have already been seen. PGs are
utilized to enable efficient update of those counters in a similar way as described
in Section 3.1. The only difference is that when the positional predicate is sat-
isfied, the PG with the matching nodes cannot be discarded until the actual
matching takes place. As a result, an additional pointer needs to be maintained
pointing to the PG whose counter is updated at each point. To be able to identify
the PGs with the matching nodes when total results are produced, the element
y maintains two step-pointers, one at the first and one at the last PG. All the
PGs in between those references contain nodes that can potentially be matched
with y. Figure 3.b shows the state structure for the multi-step query of Figure
3.a where positional predicates have been added. The computation is depicted
right after node d3 has been accessed.

3.3 Backward Axes

When the multiple-step query contains both following-sibling and preceding-
sibling axes, an adaptation of the method proposed in [5] can convert the query
into one with only following-sibling axes [15]. The resulting query can be rep-
resented with a DAG structure whose vertexes correspond to the query nodes
and edges to following-sibling axes. In the absence of positional predicates,
the additional issue (when compared to the queries in Section 3.2) that needs
to be addressed is that a query node may have multiple parents. We call such
query nodes as join nodes from now on. Our multiple-step algorithm can be
easily extended to check those additional predicates. More precisely, a document
node y that becomes a join node must have at least one corresponding sibling
within each of the CSLs of its query parents, before it is inserted within its cor-
responding CSL, or it triggers the production of results (if y corresponds to a
leaf query node).

When considering positional predicates we differentiate whether they are
specified on a forward or a backward axis in the original query. If one (or more)
of the edges of the DAG that corresponds to a following-sibling axis in the
original query is associated with a positional predicate, the counters described in

78 Zografoula Vagena et al.

Fig. 4. Integration of positional predicates with backward axes

Section 3.2 provide the necessary means to identify the nodes that satisfy those
numeric predicates.

If, on the other hand, the positional predicate is on an edge e that corresponds
to a preceding-sibling axis in the original query, then the following necessary
condition is needed so as a document node y that corresponds to the destination
node of e, participates into a result. In particular, there must exist a document
node x that corresponds to the source node of e that is the nth preceding sibling
of y in reverse document order. Nevertheless, such a predicate is easy to check,
because our algorithm will have already buffered all the necessary preceding-
siblings of y within their associated CSL. As a result, we only need to check
whether there exist n elements within this CSL (starting however from the end
of the list). If such an x element exists, it is the only matching for the y element
under consideration. A reference from y to x is then maintained and will be
used later in the result production phase. In order to identify those x elements
efficiently we utilize the same method as in the case of the forward axes, and
we partition the nodes within each CSL into PGs. In the case of the backward
axis, however, each PG will contain at most one node and as a result, there is
no need to maintain pointers between PGs. Furthermore, in this case it is also
unnecessary to maintain the differences between the PG counter values, as those
are always equal to 1.

As an example, consider the query in Figure 4, where two positional predi-
cates exist, one on a following-sibling and one on a preceding-sibling axis. The
figure also presents the intermediate state after node b3 has been accessed.

4 Experimental Evaluation

In order to investigate the effectiveness of our techniques, we performed a number
of experiments over synthetic, benchmark and real data.

Efficient Handling of Positional Predicates Within XML Query Processing 79

Fig. 5. (a) Comparison with late filtering, (b) Comparison with an RDBMS

4.1 Experimental Setup

We implemented all the algorithms in C++ on top of a native storage manager.
All the experiments were conducted on a 2.6 GHz Pentium 4 with 512MB of
main memory running RedHat Linux 9. The code was compiled with the GNU
compiler version 3.2.2.

To evaluate join performance we measure total execution time for each al-
gorithm. The times with hot cache are reported. We used 8K pages and a 100
block buffer cache.

For the purposes of this section, we refer to our proposed algorithms under
the name EPPP (for Effective Positional Predicate Processing). We begin by
investigating the importance of early identification of nodes that satisfy the
positional predicates. We also compare the performance of EPPP with a relational
DBMS. Finally, we investigate the behavior of EPPP with regard to existing main
memory XPath processors (Xalan and Saxon, available in [3] and [1]).

4.2 Importance of Early Filtering

This group of experiments investigates whether it is advantageous to identify
the context nodes that satisfy the positional predicates before performing the
matching process. For this experiment we assumed the simple one-step query
a/following-sibling::b[position() <= n] and generated a large synthetic in-
put dataset (around 100,000 a nodes and around 1 million b nodes). Without
any positional predicate the participation of input nodes in the result is 100%.

We first considered the query where no positional predicates exist and com-
pared EPPP with the ”positional predicate oblivious” processing algorithm for
the following-sibling axes (we call it the naive algorithm from now on). Subse-
quently, we begun changing the value of n, so that at each time only a proportion
of the previous results, satisfies the query. For each case we measured the time
to completion of each algorithm. For the naive algorithm we identify all the
results and then filter out the ones that do not satisfy the predicates.

Figure 5.a presents the results. Clearly, when no positional predicates ex-
ist, the two algorithms perform very similar. Hence the overhead introduced in

80 Zografoula Vagena et al.

EPPP is very small. This is because the examination of predicate satisfaction has
been integrated within the original processing algorithm by introducing simple
computations (like counter incrementing or simple boolean expression checking)
only among objects that the naive algorithm would also access. However, when
positional predicates are present, EPPP is becoming more efficient. In particular,
the more selective the predicates, the larger the performance gap between the
two methods. This is due to the fact that EPPP can discard unnecessary nodes
early and before performing the actual matching, while the naive algorithm
has to incur the overhead of creating all answers, and discard them in a later,
post-processing step.

It should be noted that the time differences are expected to be much larger
for multiple step queries. This is because the overhead of creating the results is
higher (due to the recursive traversal of the CSL through the step pointers). As
a result, the performance gain of EPPP will become even more prominent.

4.3 Comparison with an RDBMS

The next set of experiments compares the performance of the EPPP techniques
with a commercial relational DBMS, so as to compare against a pure relational
approach, that translates the query into SQL. In particular, we followed an
approach that combines ideas from [14] and [16]. We first created one table for
each of the input streams, where we stored the positional representation of each
stream node indexed on left and right. The dataset used was the 1G (text)
database generated by the XMark benchmark, with 825043 incategory nodes,
217500 mailbox nodes, and 217500 location nodes. We used the following-
sibling axis queries shown in Table 1(a). Query Q1 is a single-step query, while
Q2 and Q3 are multi-step queries.

Table 1. Queries for (a) XMark and (b) real data

Q1 : incategory/following-sibling::mailbox[2]
Q2 : location/following-sibling::incategory/following-sibling::mailbox[2]
Q3 : location[./following-sibling::incategory]/following-sibling::mailbox[2]

Q4 : LINE/following-sibling::STAGEDIR[2]
Q5 : TITLE/following::STAGEDIR[2]
Q6 : PERSONAE[/descendant::PGROUP[2]]/descendant::TITLE

To produce the SQL code, we followed the technique described in [14] and
used the Rank() function to produce the results. The relational query was pre-
optimized, and in order to decrease the overheads of the logging and recovery
subsystems, the query (being the only user query running in the system at the
time of the experiment) was evaluated in ’READ UNCOMMITED’ access mode.

The results are presented in Figure 5.b; clearly, the relational DBMS ap-
proach performs worse than EPPP. As also mentioned in [12, 14], this is because
the RDBMS is agnostic to the tree shape of the data and cannot take advan-
tage of it. Moreover, when the number of steps increases, the generated SQL

Efficient Handling of Positional Predicates Within XML Query Processing 81

becomes increasingly complex, which is more prone to optimization errors. Our
results confirm the observation that new operators must be added for a relational
DBMS to efficiently support XML data retrieval (even more so when positional
predicates are present).

4.4 Comparison with XPath Engines

We then compared EPPP with two commonly used XPath engines, namely Xalan
[3] and Saxon [1]. Their use is limited to main memory data. For these exper-
iments we utilized real data sets, namely Shakespeare’s plays [2]. Each of the
documents is small enough to be held in main memory. We evaluated queries
Q4, Q5 and Q6 shown in table 1(b) and present the average execution time.

Table 2. Comparison with Xalan and Saxon

Xalan Saxon EPPP

with w/o with w/o with w/o

Q4 0.20 0.21 0.20 0.12 0.08 0.05
Q5 0.41 0.41 0.18 0.14 0.05 0.07
Q6 0.22 0.21 0.21 0.11 0.04 0.04

The results appear in Table 2. For each query, we report the time with the
positional predicate and the time without it. These results show that the EPPP
techniques are also efficient when the data is in main memory. These results are
very encouraging as they reveal that the EPPP techniques are typically better
than specialized XML processors. Moreover, they scale to large datasets and can
be easily integrated into general purpose repositories.

4.5 Discussion

We introduced new techniques (EPPP) that provide a general and efficient solu-
tion to support positional predicates within navigation axes XPath queries. Our
techniques can take advantage of the positional predicates and avoid computa-
tion that straightforward approaches, which check the positional predicates as
a post-processing step, would entail. An important characteristic of the EPPP
techniques is that they identify nodes that participate in the result early in the
processing phase of the associated axis. Our preliminary experimental evaluation
gives strong evidence that the proposed solutions show more robust performance
when compared with pure relational approaches and main-memory specialized
XPath engines.

5 Conclusion

We studied the problem of supporting the ordered, tree shaped model of XML
data. We proposed efficient methods that extend state of the art processing

82 Zografoula Vagena et al.

techniques for any of the navigation axes, so as the latters can efficiently support
positional predicates as well. Most importantly, we showed that the intermediate
state (i.e. buffering of nodes) that is maintained by those algorithms provides
the necessary means to identify the nodes that satisfy any positional predicate.
To the best of our knowledge, this is the first approach that addresses positional
predicates in a complete, scalable, XML model-aware fashion.

As future work we intend to investigate query processing techniques that
will target heterogeneous queries (i.e. queries where interleaving of any axes is
possible). Moreover, we plan to develop methods to support combined efficient
evaluation of structural and value-based predicates.

References

1. Saxon xslt and xquery processor. In Available at http://saxon.sourceforge.net/.
2. Shakespeare’s plays in xml. In Available at

http://www.oasis-open.org/cover/bosakShakespeare200.html.
3. Xalan xslt processor. In Available at http://xml.apache.org /xalan-c/index.html.
4. S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, , and Y. Wu.

Structural joins: A primitive for efficient xml query pattern matching. In Proc. of
IEEE ICDE, 2002.

5. C. Barton, P. Charles, M. Fontoura, and V. Josifovski. Streaming xpath processing
with forward and backward axes. In Proc. of ICDE, 2003.

6. A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Key, J. Robie, and
J. Simeon. Xml path language (xpath) 2.0. In W3C Recommendation. Available
from http://www.w3.org/TR/xpath20, 2005.

7. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.
Xquery 1.0: An xml query language. In W3C Working Draft. Available from
http://www.w3.org/TR/xquery, 2005.

8. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal xml pattern
matching. In Proc. of ACM SIGMOD, 2002.

9. T. Chen, J. Lu, and T. W. Ling. On boosting holism in xml twig pattern matching
using structural indexing techniques. In Proc. of SIGMOD, 2005 (to appear).

10. M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. Xquery 1.0 and
xpath 2.0 data model. In W3C Working Draft. Available from
http://www.w3.org/TR/xpath-datamodel/, 2005.

11. T. Grust. Accelerating xpath location steps. In Proc. of ACM SIGMOD, 2002.
12. T. Grust, M. van Keulen, and J. Teubnem. Staircase join: Teach a relational dbms

to watch its (axis) steps. In Proc. of VLDB, 2003.
13. G. V. Subramanyam and P. S. Kumar. Efficient handling of sibling axis in xpath.

In Proc. of COMAD, 2005.
14. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and

C. Zhang. Storing and querying ordered xml using a relational database system.
In Proc. of ACM SIGMOD, 2002.

15. Z. Vagena, N. Koudas, D. Srivastava, and V. J. Tsotras. Answering order-based
queries over xml data. In Proc. of WWW, 2005 (poster presentation).

16. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On supporting con-
tainment queries in relational database management systems. In Proc. of ACM
SIGMOD, 2001.

Efficient Handling of Positional Predicates Within XML Query Processing 83

A Appendix

A.1 Pseudocode for One-Pair Queries

In what follows we provide the pseudocode for one-pair queries of the form:
a/following-sibling::b[n]. The algorithm takes as parameters the element
lists that correspond to the a and b query nodes, sorted on the left position of
each node.

Algorithm 1 FSwPosPredicate(EL a, EL b, PREDICATE n)
1: while !eof(a) AND !eof(b) do
2: la = nextLeft(a) {left position of next node in a list}
3: lb = nextLeft(b)
4: if la LESSTHAN lb then
5: na = next(a) {retrieve next node from a list}
6: clearStack(la) {also discard CSLs corresponding to popped pright values}
7: if emptyStack() OR (topStack() NOT EQUALS prna) then
8: pushStack(prna) {pr returns pright value of node}
9: end if{append a node to the PG at the end of corresponding CSL}

10: appendToCSL(na, CSL(topStack()))
11: else
12: nb = next(b)
13: clearStack(lb)
14: if !emptyStack() AND (topStack() EQUALS prnb) then
15: ++Counter(FIRST-PG(CSL(prnb)))
16: if NOT-EXISTS-EMPTY-PG-AT-THE-END() then
17: pg = createEmptyPG()
18: appendPG(CSL(prnb), pg)
19: Difference(pg) = 1
20: else
21: ++Difference(LAST-PG(CSL(prnb)))
22: end if
23: if Counter(FIRST-PG(CSL(prnb))) == n then
24: OutputMatches() {identify PG referenced by first PG in CSL}
25: NextPG = NEXT-PG(FIRST-PG(CSL(prnb)))
26: Counter(NextPG)=Counter(FIRST-PG(CSL(prnb)))-

Difference(NextPG)
27: DISCARD-PG(FIRST-PG(CSL(prnb)))
28: end if
29: end if
30: end if
31: end while

Relational Index Support for XPath Axes�

Leo Yuen and Chung Keung Poon

Department of Computer Science
City University of Hong Kong

{leo,ckpoon}@cs.cityu.edu.hk

Abstract. In this paper, we designed efficient indexing structure for
XML documents so that each basic XPath axis step is supported. The
indexing structure is built on top of the B+-tree which is available in
practically all commercial relational database systems. For most of the
basic axis steps, we are able to derive theoretical worst case execution
time bounds. We also perform experimental evaluation to substantiate
those bounds.

1 Introduction

The Extensible Markup Language (XML) [6] is becoming the de facto standard
for information representation and exchange over the Internet. Owing to its
hierarchical (recursive) and self-describing syntax, XML is flexible enough to
express a large variety of information. XPath is a query language promoted by
W3C for addressing parts of an XML document and is a core fragment of several
other major XML query languages like XSLT, XPointer and XQuery. Thus, it
is important to support XPath queries efficiently.

An XML document can be naturally modelled as a tree in which nodes rep-
resent XML elements while edges represent nesting between elements. A sample
XML document is shown in Figure 1.

Starting from a given context node, an XPath expression specifies a set (or
a sequence, in XPath 2.0 [2]) of nodes to be reported as follows. An XPath
expression is comprised of a number of location steps, each consisting of an axis,
a node test, and possibly a predicate as well. The axis specifies how the document
tree is to be traversed from a context node. The node test then filters the set
of reached nodes using a test on the node’s tag name or type. The predicate, if
present, specifies further conditions for filtering. The result set of a location step
will then become the context nodes for the next location step. For example, the
expression

/descendant::book/child::author

consists of two location steps. Starting from the root as the default initial context
node, the first location step “/descendant::book” specifies all nodes in the tree
with book as their tag names. Then, the second location step specifies all their
children with author as their tag names.
� This research was fully supported by a grant from the Research Grants Council of

the Hong Kong SAR, China [Project No. 9040906 (RGC Ref. No. CityU 1164/04E)].

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 84–98, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Relational Index Support for XPath Axes 85

<?xml version="1.0"?>

<a>

<d><g/><h/></d>

<c>

<e/>

<f><i/><j/></f>

</c>

Fig. 1. An example XML document

Handling large XML documents in secondary storage turns out to be a big
challenge. Earlier approaches [7, 9, 15, 16, 21] construct structural summaries of
the XML documents to improve the query efficiency. They often require large
index storage unless query performance is sacrificed.

Newer approaches apply various labelling schemes on the document tree so
that structural information about the nodes (such as ancestor-descendant or
parent-child) can be checked by just examining their labels. Then an XPath ex-
pression can be evaluated by preparing the lists of nodes satisfying the node tests
for each location step in the expression, and pairwisely joining the lists accord-
ing to the structural requirements on the nodes. Because of the labelling, this
type of joins (called containment or structural joins) does not require travers-
ing the actual document tree, thereby saving a lot of disk I/Os. A substantial
body of research [1, 5, 14, 20, 27, 29] has been on the efficient implementation
of such joins. All of them, except for [29], are for native XML databases. Also,
most of these works mainly emphasized the “vertical” axes, i.e., the ancestor,
descendant, parent and child axes. More recent work focus on evaluating certain
patterns of XPath expressions including the holistic twig joins [3, 14, 15, 22, 26],
sequences of consecutive child axis steps [4] and the next-of-kin pattern [30].

There are also investigations on evaluating the whole XPath expressions. On
the main memory model, Gottlob et al. studied the query and data complexities
of XPath expression evaluation. They designed generic algorithms [10, 12] and
determined the complexity for evaluating the whole path expression [11]. For
example, for a fragment of XPath which they called Core XPath, they designed
an algorithm for its evaluation using O(n · |Q|) time where n and |Q| represent
the size of the XML document and query respectively. In the relational domain,
Schmidt et al. [23] and Yoshikawa et al. [28] proposed path-based approaches
which, again, favours the vertical axes. DeHaan et al. [8] proposed generic trans-
lations of an XPath expression into a single SQL statement. In practice, their
method is unlikely to be efficient without modifying the relational engine.

In this paper, we focus on indexing the XML document on a relational
database to support each basic axis step efficiently. This is important despite
the many research on matching patterns of path expressions or even the whole
path expressions holistically. First, by concentrating on a basic step, we often
obtain more efficient indexing method. For example, Gottlob et al.’s algorithm

86 Leo Yuen and Chung Keung Poon

[10] requires O(n) time when the XPath expression contains only one axis step,
i.e., |Q| = 1. This is slow compared to our index structure. Second, our tech-
niques may well be applicable to these other methods. Relatively few works have
been done on this direction.

Kha et al. [17] suggested a recursive version of the UID [19] to support all
XPath axes. It requires adding dummy nodes to the original tree to make it a
complete b-ary tree before labelling in a breadth-first manner, where b is the
maximum fanout of the original tree. Thus, the label size can be very large
(O(n log n) bits per node in the worst case compared with O(log n) bits in com-
mon interval or prefix labelling).

In contrast, Grust et al. [13]’s XPath Accelerator maps each node in an
XML document to a point on the so-called pre/post plane; and translates the
four global axes, i.e., descendant, ancestor, preceding and following, into 2-d
range queries over this 2-d plane. To support the 2-d range queries, they have
implemented their index structure on top of an R-tree (a spatial index structure)
as well as a B+-tree which does not naturally suit for 2-d range queries. Thus,
no worst case performance bounds are given.

Here, we refined their work by mapping the nodes to 1-dimensional intervals
instead of points on a 2-d plane. Then the four global axes are translated to either
1-dimensional range queries or interval queries (also called 1-d point enclosure in
some literature). Consequently, we reduce the number of dimensions in the index
structure by one. Note that Grust et al. already observed that the descendant
axis can actually be computed as 1-d range queries. However, they did not go
further to consider the other three axes in the way we do.

One-dimensional range queries are well-supported by the ubiquitous B+-tree
index in relational database with good worst case performance bound. For the
interval queries, we employ the RI-tree of Kriegel et al. [18]. Thus, instead of in-
dexing the pre/post-plane by an RI-tree as suggested by Grust et al., we directly
map the nodes to intervals which is naturally supported by RI-tree. Interestingly,
Jiang et al. [14] also made use of certain variants of interval tree index structure
to support interval queries. However, they require modifying the database ker-
nel to incorporate their XR-tree. In contrast, the RI-tree is much simpler and
directly implementable on top of a B+-tree.

We observe that the set of intervals derived from the document tree possesses
many nice properties. First, the interval boundaries are confined to a limited
range, thereby allowing us to derive good theoretical bounds for many of the
axes. Second, the set of intervals are nested, i.e., for any two intervals in the set,
either they have no intersection or one is completely contained in another. This
allows us to use RI-tree, as an alternative to B+ tree, to support range queries,
which may be of independent theoretical interest. This in turn permits us to
support both XPath axes with and without name tests.

The rest of this paper is organized as follow. In the next section, we explain
some basic concept of XPath axes and the main idea of Grust et al. Then we
gradually build up to our final index structure by describing the design for
handling the descending, preceding and following axes in Section 3, the ancestor

Relational Index Support for XPath Axes 87

axis in Section 4, the local axes in Section 5 and the name test in Section 6. We
present our experimental results in Section 7. The paper is then concluded in
Section 8.

2 Preliminaries

2.1 The XPath Axes

There are altogether 13 axes in XPath. Besides the attribute and namespace axes,
the other 11 axes deal with traversals of the document tree. In the same spirit
as Zhang et al. [30], we divide them into two types. The local axes include the
self, parent, child, preceding-sibling and following-sibling axes. The global axes
include the descendant, descendant-or-self, ancestor, ancestor-or-self, preceding
and following axes.

2.2 Grust et al.’s Document Region

Given an XML document tree, Grust et al. label every node u by the pair
(pre(u), post(u)) where pre(u) and post(u) represent the pre-order and post-
order labelling of u in a depth-first traversal of the tree. For example, in Figure
2, each node is labelled with a pair of numbers, the left is its pre-order number
and the right is its post-order number. As such, each node is naturally mapped
to a point on the 2-dimensional pre/post-plane. Then the descendants of u are
precisely those nodes v such that pre(u) < pre(v) and post(v) < post(u). In
other words, v lies on the lower-right quadrant of u. Similarly, the ancestors
of u are those nodes lying on the top-left quadrant of u while the preceding
and following nodes of u are on the lower-left and upper-right quadrants of u
respectively. See Figure 2.

9, 68, 5

7, 76, 4

5, 8

4, 1

2, 2

1, 3

0, 9

3, 0 jihg

fed

cb

a

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

po
st

pre

a

d

i

jf
c

e

hg

b

Fig. 2. Left: Pre/post-order of tree nodes. Right: The pre/post-plane

Thus, supporting these four XPath axes amounts to indexing the pre/post-
plane to allow for 2-d range searching. To do this, Grust et al. have experimented
with ordinary B+-tree index as well as R-tree (a spatial index structure).

88 Leo Yuen and Chung Keung Poon

3 The Descendant, Preceding and Following Axes

3.1 Mapping Nodes to Intervals

We will label each node in the document tree T by an interval as follows. It
is folklore that the structure of a tree can be represented by a set of nested
parentheses. For convenience, we will call it a bracket expression. The bracket
expression of T can be obtained by performing a depth-first traversal on T .
When we start traversing the subtree rooted at u, we output an opening bracket
for node u. When we have finished traversing the subtree of u, we output a
closing bracket for u. Then the first-order number of a node u, denoted f(u), is
the position of its opening bracket in the bracket expression of T . Similarly, the
last-order number of u, denoted l(u), is the position of its closing bracket. See
Figure 3 for an example.

1, 20

2, 9

3, 8

4, 5 6, 7

10, 19

11,12 13,18

16,1714,15

a

b c

d e f

g h i j

g h i j

1 6 11 16

d e f

b c

a

Fig. 3. Left: Interval labelling of tree nodes. Right: The corresponding intervals

Note that for a tree with n-nodes, there are 2n brackets. Thus, the range of
the first- and last-order number is in [1..2n]. Moreover, f(u) < l(u) for every
node u. We can view that each node u is labelled with the interval [f(u), l(u)].
The following properties are obvious.

Proposition 1. For any tree labelled with the above interval labelling scheme,
node u is an ancestor of v (or equivalently, v is a descendant of u) iff the interval
[f(v), l(v)] is contained in [f(u), l(u)], i.e., f(u) < f(v) < l(v) < l(u).

Proposition 2. For any tree labelled with the above interval labelling scheme,
the set of intervals is nested, i.e., any two intervals are either non-overlapping
or one is completely contained in another.

3.2 Finding Descendants, Preceding and Following Nodes

Based on Proposition 1, the descendants v of a context node c can be charac-
terised by

f(c) < f(v) < l(c) (1)

which is a 1-d range searching. An alternative characterisation is:

f(c) < l(v) < l(c). (2)

Relational Index Support for XPath Axes 89

This will turn out to be useful as one can choose either condition to check as
convenient. For the preceding nodes of context node c, they are those nodes v
whose opening tag comes before that of c except when they are the ancestors
of c ([6]). That means, if we perform a depth-first traversal, we will finish the
traversal of the subtree rooted at v before we start traversing the subtree rooted
at c. Hence we have the condition

l(v) < f(c). (3)

Symmetrically, the following nodes of c are those nodes v whose opening tag
comes after that of c, except those of c’s descendants. That is, we completed
traversing the subtree of c before starting the traversal of v. Hence the nodes v
can be characterised as:

l(c) < f(v). (4)

Note that such characterization should be quite obvious. For example, it has
been mentioned in [25, 28].

As all three axes involve range queries, we store the first and last-order num-
ber of the nodes as attributes in a relational table and build a B+ tree index on
it. More specifically, we will have the following two tables:

XTfirst(first, last, data)
XTlast(last, first, data).

The attributes first and last store f(u) and l(u) of a node u respectively. The
attribute data contains other information of u. An underlined attribute indicates
that it is (part of) the primary key for indexing and the tuples are sorted on the
primary key.

To compute the following axis of c, we select those tuples t from XTfirst where
l(c) < t.first. The preceding axis of c is given by selecting those tuples t from
XTlast where t.last < f(c). Descendants of c can be found by selecting tuples t
from XTlast where f(c) < t.last < l(c). Since the tuples are sorted according to
the primary key, the search will take only O(logB n + k/B) time where k is the
output size and B is a parameter depending on the block size.

4 The Ancestor Axis

Using Proposition 1, the ancestors of a context node c are those nodes v such that
[f(v), l(v)] contains f(c) (or equivalently l(c)). To find those intervals enclosing
f(c), we make use of an RI-tree index.

4.1 RI-Tree

The original RI-tree ([18]) of height h consists of an implicit complete binary
tree U of height h (with the root at height h − 1 and leaves at height 0). Each
node will get an ID (i.e., an integer) and for convenience, we identify a node with

90 Leo Yuen and Chung Keung Poon

its ID. The root is 2h−1 and its left and right children are 2h−1−2h−2 = 1 ·2h−2

and 2h−1 +2h−2 = 3 · 2h−2 respectively. In general, for a node x = x′2� where 2�

is the largest power of two that divides x, its left and right sons are x′2� − 2�−1

= (2x′ − 1)2�−1 and x′2� + 2�−1 = (2x′ + 1)2�−1, respectively.

Construction. Suppose we are to store a set of n intervals [li, ri], 1 ≤ i ≤ n,
whose boundaries are taken from a bounded universe {1, . . . , 2h − 1}, i.e., each
boundary can be represented as an h-bit binary number. The main idea is to
associate each interval [li, ri] with the highest node x such that li ≤ x ≤ ri.

To compute such an x, we can search from the root. Alternatively, one can
observe that x is nothing but the lowest common ancestor of li and ri in U .
Thus x can be computed easily by considering the binary representation of li
and ri and finding the most significant bit on which they differ. Let’s say this is
the (l − 1)-st bit counting from bit 0. Then x = �li/2l� · 2l which is the same as
�ri/2l� · 2l.

To facilitate the searching of intervals associated with a node x, the in-
tervals are stored twice, once in sorted order of left boundaries and once in
right boundaries. Thus, there will be two database tables, L(node, left, right)
and R(node, right, left) where the node attribute stores the ID of a node in the
binary tree U and the left, right attributes store the left and right boundaries
of an interval assoicated with the node specified in the node attribute. Clearly,
the two tables L and R require O(n) space in total. They can be constructed
in O(n logB n) time by scanning through the n intervals once. For each interval
[l, r], we compute the associated node x as described above and then insert the
record (x, l, r) in L and (x, r, l) in R. Note that U is never explicitly stored. In
particular, if no intervals are associated with a node x in U , the tables L and R
will not have an entry with the node attribute storing value x.

Querying. To search for the intervals enclosing a query point q ∈ {1, . . . , 2h −
1}, we start from the root 2h−1 and search down the path to q. Suppose we are
at a node x along this path. If q ≤ x, then we report those interval [l, r] with
l ≤ q since its right endpoint r ≥ x ≥ q. (Those interval [l, r] such that l > q
need not be reported because q is outside the interval.) This is done by searching
the table L. Similarly, if q ≥ x, then we need only report those interval [l, r] with
r ≥ q. This is done by searching table R. If q < x or q > x, we search down x’s
left or right son respectively. Otherwise, we can stop.

In general, a query requires accessing ≤ h nodes in the RI-tree. For 0 ≤ i ≤
h − 1, if the node at height i contains ki intervals enclosing the query point,
retrieving these intervals assuming a B+-tree index requires O(logB n + ki/B)
time. Summing up all the h levels, the complexity for a query is O(h logB n+k/B)
where k =

∑
i ki is the total number of intervals to be reported.

4.2 Finding Ancestors

By Proposition 2, our intervals are nested. Thus, for those intervals associated
a node in U , if they are already sorted in order of the left endpoints, they must

Relational Index Support for XPath Axes 91

also be sorted in (reverse) order of their right endpoints. So, we will only keep
one table, say, L.

To find the ancestors of a context node c, we search the RI-tree with the query
point f(c). We start from the root 2h−1. If f(c) ≤ 2h−1, we examine the table L
and report all records t such that t.node = 2h−1 and t.left < f(c). If f(c) ≥ 2h−1,
we examine the table L and report all records t such that t.node = 2h−1 and
t.right > f(c). After that, we move down the tree one level to examine either the
node 1 · 2h−2 or 3 · 2h−2 depending on f(c) < 2h−1 or f(c) > 2h−1. The process
is then repeated until we reached a node x where f(c) = x. To bound the query
complexity, note that our interval boundaries lie within the range [1, ..., 2n].
Thus, we have h = O(log n) and the query time becomes O(log n logB n + k/B).

We remark that the RI-tree can also be used to find the parent of a node
though it is not as efficient as the method we mention in the next section. Observe
that the intervals enclosing the query point f(c) are nested and the innermost
one corresponds to the parent of node c. We can make use of the RI-tree to
find the innermost interval enclosing the query point. This is done by computing
the interval with the largest left endpoint among those enclosing f(c). Thus the
query time is the same as that of finding ancestors.

5 The Local Axes

In this section, we modify our previous table XTfirst to support the child, parent
and preceding/following-sibling axes.

To find the children of a context node c, enumerating all descendants of c
and picking the maximal ones, i.e., the ones not contained in any other de-
scendant of c, would be slow. Instead, we change one of the tables, XTfirst, to
XTfirst(parent, first, last, data) with tuples sorted in the order of the key (parent,
first). With this change, the children of context node c can be obtained by se-
lecting the tuples t where t.parent = f(c). Querying on the child axis will take
O(logB n + k/B) time where k is the number of children in the result set.

In addition, finding parent is also easy: Suppose the parent attribute of (the
record in XTfirst for) the context node c contains the value f(p). Then we search
for the record t where t.first = f(p). This takes O(logB n) time assuming a B+-
tree index is built on attiribute first. Finding the preceding or following siblings
of c can be done by finding the parent p of c and then the children v of p with
f(v) < f(c) (for preceding-siblings) or f(v) > f(c) (for following-siblings). Thus,
these axes take O(logB n+ k/B) time as well, where k is, again, the output size.

The drawback of introducing the parent attribute to table XTfirst is that the
complexity for the following axis will be larger as the records are now clustered
around the parent attribute instead of the first attribute. However, as we have
a B+-tree index on the first attribute, we can still bound the complexity by the
depth d of the document tree as follows. Recall that the tuples are arranged in
the order of their parents’ first-order number. Consider an arbitrary context node
c and let its ancestors be u1, u2, . . . , ud′ , d′ ≤ d, as we walk up the path from c
to the root of the document. For convenience, define u0 = c. Then for 1 ≤ i ≤ d′,

92 Leo Yuen and Chung Keung Poon

ui−1 is a child of ui. Let wi1, wi2, . . . be the children of ui that follows ui−1; and
let Wi1, Wi2, . . . be the subtrees rooted at these nodes respectively. The following
axis of c is then the union of those nodes in Wi1, Wi2, . . ., for 1 ≤ i ≤ d′. Fix an i
and observe that the first-order numbers of the nodes in Wi1, Wi2, . . . are larger
than that of ui but smaller than those of the nodes in Wi+1,1, Wi+1,2, The
first-order number of the parent of a node in Wi1, Wi2, . . . is either the first-order
number of ui or that of some node in Wi1, Wi2, Hence, we can conclude that
the following nodes of c are partitioned into at most 2d′ segments in the physical
storage. Hence retrieving all the segments require O(d logB n + k/B) time. In
practice, d is often a small value.

6 Handling Name Tests

We are now ready to present our final design of the index structure which
supports name tests. This is important because XPath expressions often con-
tain tests on the tag names. To support such expressions efficiently, we in-
troduce a tag attribute in the database table. Thus the modified tables are:
XTfirst(tag, parent, first, last, data) and XTlast(tag, last, first, data). The B+-tree
index for attribute first in XTfirst is now extended to (tag, first). Then with name
test, the descendant, preceding, child, preceding- and following-sibling axes are
now supported in O(logB n + k/B) time. The following axis with name test
is supported in O(d logB n + k/B) time. The ancestor axis, with name test,
takes O(log n logB n + d/B) (recall d is the document tree height) while taking
O(log n logB n + k/B) time without name test. The parent axis remains to be
O(logB n) with or without name test.

For the descendant, preceding and following axes without name test, we make
use of the RI-tree, exploiting the nesting properties of the intervals. To compute
the preceding axis of context node c, we need to find all document nodes v such
that 1 ≤ l(v) < f(c). Consider an RI-tree node x. If x ≥ f(c), then it follows
from the construction of RI-tree that any interval associated with x must have
right endpoint at least f(c) and hence not in the answer set. Hence we need only
consider those node x < f(c). For each such node, we examine its associated
intervals and report only those with right endpoint less than f(c). It can be
shown that there are at most log n RI-tree nodes which contain intervals not
in the answer set. (The main idea is that each level of the RI-tree U can have
at most one node containing intervals not in the answer set. Formal proof will
be given in the full paper.) The query complexity is then O(log n logB n + k/B)
where k is the output size. The following axis is handled similarly.

To compute the descendant axis of c, we can do even better by using the fact
that the query range [f(c), l(c)] is itself one of the nested intervals. As before,
we need not consider those RI-tree node x outside (f(c), l(c)). Let [f(c), l(c)]
be associated with node z in the RI-tree. We claim that for any RI-tree node x
in (f(c), l(c)) except for z, all its associated intervals [l, r] must satisfy f(c) <
l < r < l(c). Otherwise, if l < f(c) < l(c) < r, then [l, r] would have been
associated with a node y at least as high as z in the RI-tree. So, y is higher than

Relational Index Support for XPath Axes 93

x, a contradiction. Hence the claim follows. Thus, the query complexity for the
descendant axis is O(logB n + k/B).

Now, the only axes for which our structure does not guarantee a worst case
time bound are the child, preceding- and following-siblings without name test.

7 Experimental Evaluation

In this section, we present our experimental results on the query performance of
each axis. Our XML documents are generated by XMLgen of the XMark bench-
mark project [24]. The tool produces XML documents of a specific structure but
allows us to specify the document size.

We implemented our index structure as well as the B+-tree and R-tree version
of Grust et al.’s design for comparison. All programs are written in Java. All the
experiments were performed on an Intel Pentium 4 2.6 GHz PC with 1GB RAM
running Windows XP. Our purpose here is not to compare the different designs
on absolute terms but to elicit their behaviours as the document sizes and/or
output sizes grow.

We used the PostgreSQL database since it is equipped with GiST that sup-
ports both of the indexes. For the B+-tree version, we implemented its stretched
version (Section 4.2 [13]). For the R-tree version, we use the optimization de-
scribed in Section 4.1 of [13] that minimizes the query window size using the
subtree size as additional information. However, we only use the R-tree for in-
dexing the two dimensional pre/post plane rather than making the whole tuple
as a 5-dimensional descriptor. It is well-known that the performance of an R-tree
deteriorates as the number of dimensions increases. The indexes and clustering
they mentioned are also applied.

7.1 Range Searching on B+-Tree
Our descendant, preceding, child, preceding- and following-sibling axes with
name test requires range searching on B+-tree, taking O(logB n + k/B) time.
The following axis requires O(d logB n + k/B) time. To verify the formula, we
design the experiments so that in each set, either only the input size or the
output size varies.

Input Size. To show the effect on varying the input size n, we choose a path
that returns only one node in whatever input size.

Figure 4 shows that the times for Grust et al’s design grows linearly instead
of logarithmically in the input size n. The reason is that they need to filter
out nodes that do not match the node test (false hits). Our design (near the
horizontal axis in the graph) takes negligible time even for different input sizes.
This indicates that the logB n-term is very small (at least for input size ranging
from 11 to 113 MB).

Output Size. To show the effect on varying output size k, we use a large enough
input file (56MB) and provide different name tests that yield different output
sizes.

94 Leo Yuen and Chung Keung Poon

0

1

2

3

4

5

6

0 20 40 60 80 100 120

T
im

e
(s

)

Input File Size (MB)

Our Design
Grust’s B-Tree
Grust’s R-Tree

Fig. 4. Effect of Input Size on Descendant Axis with Name Test (Query: /descen-
dant::open auctions)

Figure 5 shows the result for descendant, child, preceding and following axes.
In all cases, our design gives linear growth with respect to the output size k while
Grust’s design may sometimes give irregular growth, especially for their R-tree
version. This is possibly due to the overhead of false hits, and the fact that
R-tree’s performance has no worst case guarantee.

7.2 Interval Queries of RI-Tree

Our ancestor axis (without name test) is done by an interval query on the RI-
tree using O(log2 n logB n + k/B) time. Due to the given DTD of the XMLgen,
the generated XMLs have a depth of d = 11 which is too small for showing the
effect of output size. Therefore we focus on the effect of the input size in this
subsection. Here, we first use a descendant axis to select a single element node
called ‘africa’ that has k = 2 ancestors for any input size. We can then vary
the input size n. In measuring the time, we only count the second step (i.e., the
ancestor axis).

The result in Figure 6 (left) shows that Grust et al.’s B+-tree takes linear
time in n while their R-tree and our design have negligible time. To magnify the
processing time to observable magnitude, we perform the previous experiment
again but for each point we repeat the operation 1,000 times. Then we plot the
graph with x-axis in log-scale. Figure 6 (right) verified our claims that the time
grows in log n logB n time where logB n can be treated as constant for our range
of input sizes.

7.3 Range Query on RI-Tree

Our descendant axis (without name test) is handled by range query on the
RI-Tree and takes O(logB n + k/B) time. Our preceding and following axes
without name test are handled by range query on RI-Tree as well and take
O(log n logB n + k/B) time.

Relational Index Support for XPath Axes 95

0

1

2

3

4

5

6

7

8

0K 10K 20K 30K 40K 50K 60K

T
im

e
(s

)

Output Size (no. of nodes)

Our Design
Grust’s B-Tree
Grust’s R-Tree

0

0.5

1

1.5

2

2.5

3

3.5

0.5K 1K 1.5K 2K 2.5K 3K 3.5K 4K 4.5K 5K

T
im

e
(s

)

Output Size (no. of nodes)

Our Design
Grust’s B-Tree
Grust’s R-Tree

0

1

2

3

4

5

6

10K 15K 20K 25K 30K 35K 40K 45K

T
im

e
(s

)

Output Size (no. of nodes)

Our Design
Grust’s B-Tree
Grust’s R-Tree

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

10K 12K 14K 16K 18K 20K 22K 24K 26K 28K 30K

T
im

e
(s

)

Output Size (no. of nodes)

Our Design
Grust’s B-Tree
Grust’s R-Tree

Fig. 5. Effect of Output Size. Top-left: descendant axis with name test. Top-right:
child axis with name test. Bottom-left: preceding axis with name test. Bottom-right:
following axis with name test

Output Size. For conciseness, we only show the graph for the descendant and
following axes. The queries used for the descendant axis are:

/descendant::?/descendant::*

where ? is certain tag name. Those for the following axis are:

/descendant::?/following::*.

The graph for the preceding axis is similar to that of the following axes.
In these cases, Grust et al.’s B+-tree should have the best performance since

it favors range query. Figure 7 shows that our RI-tree (originally designed for
interval queries) has comparable performance with B+-tree on range queries. In
comparison, the R-tree also grows linearly but at a somewhat larger slope.

Input Size. Without name test, it is difficult to control the output size when
we vary the input size. So, we skip its evaluation in this paper.

96 Leo Yuen and Chung Keung Poon

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 15 20 25 30 35 40 45 50 55 60

T
im

e
(s

)

Input File Size (MB)

Our Design
Grust’s B-Tree
Grust’s R-Tree

7.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

8 16 32 64 128

T
im

e
(s

)

Input File Size (MB) [log scale]

Our Design (RI-Tree)

Fig. 6. Effect of Input Size on Ancestor Axis without Name Test. Left: linear scale.
Right: x-axis in log-scale

0

5

10

15

20

25

30

0K 100K 200K 300K 400K 500K 600K 700K 800K 900K

T
im

e
(s

)

Output Size (no. of nodes)

Our Design
Grust’s B-Tree
Grust’s R-Tree

0

5

10

15

20

25

0K 100K 200K 300K 400K 500K 600K 700K 800K

T
im

e
(s

)

Output Size (no. of nodes)

Our Design
Grust’s B-Tree
Grust’s R-Tree

Fig. 7. Effect of Output Size on Descendant Axis (left) and Following Axis (right) both
without Name Test

8 Conclusion

We studied the problem of indexing an XML document with traditional rela-
tional database to support all the XPath axes. We consider the physical ordering
of the data and derived worst case upper bounds on the execution time for most
of the XPath axes. The only axes for which our structure does not provide a
worst case guarantee on the performance bound are the child, preceding- and
following-siblings when name tests are not present.

We verifed experimentally our formulas by performing a series of experiments.
The results show that in our design the input file size has very small effect com-
pared to the output size. Thus, it is suitable for indexing large XML documents,
even when they have varying structures. (Our design does not require a DTD of
the documents.)

Our design requires only B+-tree index which is available in practically any
relational database. Without the need of R-tree index, our index structure will
have more predictable performance compared with the XPath Accelerator of
Grust et al. This may be a desirable feature when it is used as a basic building
block for other methods of XPath evaluation.

Relational Index Support for XPath Axes 97

Our observation that RI-Tree can handle range queries on nested intervals is
also interesting. Perhaps more interesting properties of the RI-tree are waiting
ahead for our discovery.

References

1. S. Al-Khalifa, H. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu.
Structural joins: a primitive for efficient XML query pattern matching. In 18th
International Conference on Data Engineering, pages 141–152, 2002.

2. A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and
J. Simeon. XML Path Language (XPath) 2.0. Technical Report W3C Working
Draft, Version 2.0, World Wide Web Consortium, Aug. 2002.

3. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern
matching. In Proceedings of the 2002ACM SIGMOD Conference on the Manage-
ment of Data, pages 310–321, 2002.

4. Y. Chen, S. B. Davidson, and Y. Zheng. BLAS: an efficient xpath processing sys-
tem. In Proceedings of the 2004ACM SIGMOD Conference on the Management of
Data, pages 47–58, 2004.

5. S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient struc-
tural joins on indexed XML documents. In Proceedings of the 29th International
Conference on Very Large Data Bases, pages 263–274, 2002.

6. W. W. W. Consortium. Extensible markup language (XML) 1.0 (second edition)
– W3C recommendation. Available at
http://www.w3.org/TR/2000/WD-xml-2e-20000814, 2000.

7. B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A fast
index for semistructured data. In Proceedings of the 27th International Conference
on Very Large Data Bases, pages 341–350, 2001.

8. D. deHaan, D. Toman, M. P. Consens, and M. T. Ozsu. A comprehensive XQuery to
SQL translation using dynamic interval encoding. In Proceedings of the 2003ACM
SIGMOD Conference on the Management of Data, pages 623–634, 2003.

9. R. Goldman and J. Widom. DataGuides: enabling query formulation and opti-
mization in semistructured databases. In Proceedings of the 23th International
Conference on Very Large Data Bases, pages 436–445, 1997.

10. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In Proceedings of the 29th International Conference on Very Large Data
Bases, pages 95–106, 2002.

11. G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation.
In Proceedings of the 22nd Annual ACM Symposium on Principles of Database
Systems, pages 179–190, 2003.

12. G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation: improving time
and space efficiency. In 19th International Conference on Data Engineering, pages
379–390, 2003.

13. T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath evaluation in any
RDBMS. ACM Transactions on Database Systems, 29(1):91–131, 2004.

14. H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: indexing XML data for
efficient structural joins. In 19th International Conference on Data Engineering,
pages 253–263, 2003.

15. R. Kaushik, P. Bohannon, J. Naughton, and H. Korth. Covering indexes for branch-
ing path queries. In Proceedings of the 2002ACM SIGMOD Conference on the
Management of Data, pages 133–144, 2002.

98 Leo Yuen and Chung Keung Poon

16. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity for
efficient indexing of paths in graph structured data. In 18th International Confer-
ence on Data Engineering, pages 129–140, 2002.

17. D. D. Kha, M. Yoshikawa, and S. Uemura. A structural numbering scheme for
XML data. In EDBT Workshops, pages 91–108, 2002.

18. H.-P. Kriegel, M. Potke, and T. Seidl. Managing intervals efficiently in object-
relational databases. In Proceedings of the 26th International Conference on Very
Large Data Bases, pages 407–418, 2000.

19. Y. K. Lee, S. Yoo, K. Yoon, and P. B. Berra. Index structures for structured
documents. In Digital Libraries, pages 91–99, 1996.

20. Q. Li and B. Moon. Indexing and querying XML data for regular path expressions.
In Proceedings of the 27th International Conference on Very Large Data Bases,
pages 361–370, 2001.

21. T. Milo and D. Suciu. Index structures for path expressions. In 7th International
Conference on Database Theory, pages 277–295, 1999.

22. P. Rao and B. Moon. PRIX: indexing and query XML using Prüfer sequences. In
20th International Conference on Data Engineering, pages 288–300, 2004.

23. A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage
and retrieval of XML documents. In Proceedings of the 3rd International Workshop
on the Web and Databases, pages 137–150, 2000.

24. A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark:
a benchmark for XML data management. In Proceedings of the 29th International
Conference on Very Large Data Bases, pages 974–985, 2002.

25. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang. Storing and querying ordered XML using a relational database sys-
tem. In Proceedings of the 2002ACM SIGMOD Conference on the Management of
Data, pages 204–215, 2002.

26. H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A dynamic index method for
queryinh XML data by tree structures. In Proceedings of the 2003ACM SIGMOD
Conference on the Management of Data, pages 110–121, 2003.

27. W. Wang, H. Jiang, H. Lu, and J. X. Yu. PBiTree coding and efficient processing
of containment joins. In 19th International Conference on Data Engineering, pages
391–, 2003.

28. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based ap-
proach to storage and retrieval of XML documents using relational databases. ACM
Transactions on Internet Technology, 1(1):110–141, 2001.

29. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting con-
tainment queries in relational database management systems. In Proceedings of
the 2001ACM SIGMOD Conference on the Management of Data, pages 425–436,
2001.

30. N. Zhang, V. Kacholia, and M. T. Ozsu. A succinct physical storage scheme for
efficient evaluation of path queries in XML. In 20th International Conference on
Data Engineering, pages 56–65, 2004.

Supporting XPath Axes with Relational
Databases Using a Proxy Index�

Olli Luoma

Department of Information Technology and Turku Centre for Computer Science
University of Turku, Finland

olli.luoma@it.utu.fi

Abstract. In recent years, a plethora of work has been done to develop
methods for managing XML documents using relational databases. In
order to support XPath or any other XML query language, the rela-
tional schema must allow fast retrieval of the parents, children, ances-
tors, or descendants of a given set of nodes. Most of the previous work
has aimed at this goal using pre-/postorder encoding. Relying on this
method, however, may lead to scalability problems, since the structural
relationships have to be checked using nonequijoins, i.e., joins using <
or > as their join condition. Thus, we discuss alternative methods, such
as ancestor/descendant and ancestor/leaf indexes, and present a novel
method, namely a so called proxy index. Our method allows us to replace
nonequijoins with equijoins, i.e., joins using = as their join condition. The
results of our comprehensive performance experiments demonstrate the
effectiveness of the proxy index.

1 Introduction

Because of its simplicity and flexibility, XML [1] has widely been adopted as the
lingua franca of the Internet. Currently, XML is used not only as a platform-
independent means to transfer data in computer networks, but also as a format
to store large amounts of heterogeneous data in many modern application areas,
such as bioinformatics [2]. It is thus widely agreed that without efficient means
for managing XML documents, the potential of XML cannot be realized to its full
extent, and the database community has been actively developing methods for
storing and querying large amounts of XML data using XML query languages,
most often XPath [3] and XQuery [4].

According to XPath [3], every well-formed XML document can be represented
as an XML tree, a partially ordered tree with seven different node types. In
addition to this tree representation, XPath also lists 12 axes1, i.e., operators
for tree traversal, such as parent, child, ancestor, descendant, preceding,
and following. In order to provide adequate XPath support, all axes have to
be implemented efficiently. The majority of the previous proposals, however,

� Supported by the Academy of Finland.
1 In XPath 2.0, the namespace axis of XPath 1.0 was deprecated.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 99–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 Olli Luoma

have considered only the descendant and child axes, and thus they lack the
flexibility and generality intended by the original XPath recommendation.

In many previous proposals [5] [6] [7], the structural relationships between
the nodes of an XML tree have been modeled using pre-/postorder encoding,
i.e., by maintaining the pre- and postorder numbers of the nodes, or by using
some similar method. This method forces us to check the nested relationships
using expensive nonequijoins, which can easily lead to scalability problems [8]
[9]. Thus, methods aiming at replacing nonequijoins with equijoins have been
proposed; an ancestor/descendant index [10] maintains all ancestor/descendant
pairs, an ancestor/leaf index [9] maintains the ancestor information only for the
leaf nodes.

Maintaining the ancestor/descendant or ancestor/leaf information explicitly,
however, consumes much more storage than pre-/postorder encoding. According
to our previous experiments [9], a database based on ancestor/leaf approach
consumes roughly twice and a database based on ancestor/descendant approach
roughly four times the storage consumed by a database based on pre-/postorder
encoding, which makes these methods somewhat impractical.

The main contributions of this paper can be listed as follows:

1. We present a novel method for modeling the structural relationships in XML
trees, namely a proxy index. Our method supports all 12 XPath axes, pro-
vides good query performance, and encodes the structural information much
more compactly than the ancestor/descendant and ancestor/leaf indexes.

2. We show that not only is it possible to support all axes of XPath using an-
cestor/descendant, ancestor/leaf, and proxy indexes, it is actually practical
when large XML documents have to be queried efficiently. To support this
claim, we present the results of our comprehensive performance experiments.

This paper proceeds as follows. In section 2, we review the related work and in
section 3, we present the basics of the XPath query language; section 4 provides
the reader with a more detailed discussion on the previous proposals. We present
the proxy index in section 5 and the results of our performance evaluation in
section 6. Section 7 concludes this article and discusses our future work.

2 Related Work

From a technical viewpoint, an XML management system (XMLMS) can be built
in several ways. One option is to build a native XML database, i.e., to build an
XML management system from scratch. This option allows one to design all
features, such as query optimization and storage system, specifically for XML
data. In the XML research literature, there are several examples of this approach,
such as Lore [11] and NATIX [12].

Another approach followed, for instance, in [13] is to build an XMLMS on
top of an object-oriented database. This approach allows us to take advantage
of the rich data modeling capabilities of object-oriented databases. In this con-
text, however, traversing large XML trees means traversing large object hier-
archies, which can be a rigorous task, and thus the scalability of these systems

Supporting XPath Axes with Relational Databases Using a Proxy Index 101

might be somewhat questionable [14]. Relational databases, on the contrary, pro-
vide a technically sound platform for data management, and thus building an
XMLMS on top of a relational database is a viable option. This method allows
the relational data and the XML data to coexist the same database, which is
advantageous, since it is unlikely that XML databases can completely replace
the traditional database technology in the near future. Unfortunately, there is
some undeniable mismatch between the hierarchical XML and flat relational
data models, and thus, after half a decade of XMLMS research, it still is not
clear which one or ones of these approaches will prevail.

The previous proposals to manage XML data using relational databases can
roughly be divided into two categories [5]. In the structure-mapping approach
(schema-aware approach), the relational models are designed in accordance with
the DTDs or the logical structure of the documents. The standard approach is to
create one relation for each element type [14], but more sophisticated methods
have also been proposed [15]. All of these methods, however, are at their best
in applications where a large number of documents corresponding to a limited
number of DTDs have to be stored. If this is not the case, we are at risk to end
up with a very large number of relations, which complicates the XPath-to-SQL
query translation [7] [16]. The other approach is the model-mapping approach
(schema-oblivious approach) in which the database schemas represent the generic
constructs of the XPath data model, such as element, attribute, and text nodes.
Unlike in the structure-mapping approach, the database schema is fixed, and
thus we can store any well-formed XML document without changing the schema.
Having a fixed schema also simplifies the XPath-to-SQL query translation.

Thus far, the model-mapping approach has been followed in many proposals,
such as XRel [5] (based on a variant of pre-/postorder encoding), XParent [10]
(based on an ancestor/descendant index), and SUCXENT [17] (based on a vari-
ant of ancestor/leaf index). All of these methods, however, have only considered
the descendant and child axes of XPath, and thus they provide a very limited
XPath support. The XPath accelerator proposed by Grust [7] took a leap for-
ward by providing support for all XPath axes and relative addressing. However,
since XPath accelerator is based on pre-/postorder encoding, the nested rela-
tionships have to be checked using nonequijoins, and thus the scalability of the
method may be somewhat in doubt [9].

3 XPath Axes

As mentioned earlier, the tree traversals in XPath are based on 12 axes which are
presented in Table 1. These axes are used in location steps which, starting from
a context node, result in a set of nodes in the relation defined by the axis with
the context node. A location step of the form axis::nodetest[predicate] also
includes a node test which can be used to restrict the name or the type of the
selected nodes. An additional predicate can be used to filter the resulting node
set further. For example, the location step n/descendant::record[child::*]
selects all descendants of the context node n which are named record and have
one or more child nodes.

102 Olli Luoma

Table 1. The XPath axes and their semantics

Axis Semantics of n/Axis

child Children of n.
parent Parent of n.
ancestor Transitive closure of parent.
descendant Transitive closure of child.
ancestor-or-self Like ancestor, plus n.
descendant-or-self Like descendant, plus n.
preceding Nodes preceding n, no ancestors.
following Nodes following n, no descendants.
preceding-sibling Nodes preceding n and with the same parent as n.
following-sibling Nodes following n and with the same parent as n.
attribute Attribute nodes of n.
self Node n.

XPath also provides a means for checking the string values of the nodes.
The XPath query /descendant-or-self::record="John Scofield Groove
Elation Blue Note", for instance, selects all element nodes with label “record”
for which the value of all text node descendants concatenated in document order
matches “John Scofield Groove Elation Blue Note”. In the scope of this paper,
however, we will not concentrate on querying the string values; our focus is on
the XPath axes.

4 Previous Proposals

In this section, we discuss the previous proposals for modeling nested relation-
ships in XML documents using relational databases in detail. For brevity, we
have omitted the document identifiers from the relations, but as in [9], these
could easily be added to support storage and retrieval of multiple documents in
a single database.

4.1 Pre-/Postorder Encoding

The pre-/postorder encoding [18] makes use of the following very simple property
of pre- and postorder numbers. For any two nodes n1 and n2, n1 is an ancestor
of n2, iff the preorder number of n1 is smaller than the preorder number of n2

and the postorder number of n1 is greater than the postorder number of n2. As
in [7], we store all the nodes in a single relation Node:

Node(Pre, Post, Par, Type, Name, Value)

In this schema, the database attributes Pre, Post, and Par correspond to
the preorder and postorder numbers of the node and the preorder number of the
parent of the node, respectively. The database attribute Type corresponds to
the type of the node and the database attribute Name to the name of the node.

Supporting XPath Axes with Relational Databases Using a Proxy Index 103

Value corresponds to the string value of the node. Like many earlier proposals
[5] [10] [17], we do not store the string values of element nodes.

As noticed by Grust [7], the pre- and postorder numbers, combined with
the parent information, are sufficient to perform all XPath axes by using the
query conditions presented in Table 2; node tests can be supported by using the
additional query conditions presented in Table 3.

Table 2. Pre-/postorder encoding query conditions for supporting the axes

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor ni+1.Pre<ni.Pre AND ni+1.Post>ni.Post

descendant ni+1.Pre>ni.Pre AND ni+1.Post<ni.Post

ancestor-or-self ni+1.Pre<=ni.Pre AND ni+1.Post>=ni.Post

descendant-or-self ni+1.Pre>=ni.Pre AND ni+1.Post<=ni.Post

preceding ni+1.Pre<ni.Pre AND ni+1.Post<ni.Post

following ni+1.Pre>ni.Pre AND ni+1.Post>ni.Post

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Table 3. Additional query conditions for supporting the node tests

Axis Query conditions

node()

text() ni+1.Type="text"

comment() ni+1.Type="comm"

processing-instruction() ni+1.Type="proc"

name ni+1.Type="elem" AND ni+1.Name="name"

* ni+1.Type="elem"

For brevity, we will not discuss the XPath-to-SQL query translation in full
detail. For our purposes, it is sufficient to say that the SQL queries can be
generated simply by walking through all the location steps in an XPath query
and by using the query conditions to perform each step. For example, the XPath
query n1/descendant::record can be translated into the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2

WHERE n2.Pre>n1.Pre AND n2.Post<n1.Post

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

The last row of the query is added to ensure that the nodes are returned in
document order, as required by the XPath recommendation. Optional predicates

104 Olli Luoma

in queries can be evaluated by changing the tuple variable in the SELECT part of
the query. The XPath query n1/descendant::*/following-sibling::record
[child::title], for example translates into the following SQL query:

SELECT DISTINCT n3.*

FROM Node n1, Node n2, Node n3, Node n4

-- First step /descendant::*

AND n2.Pre>n1.Pre AND n2.Post<n1.Post

AND n2.Type="elem"

-- Second step /following-sibling::record

AND n3.Pre>n2.Pre AND n3.Post>n2.Post AND n3.Par=n2.Par

AND n3.Type="elem" AND n3.Name="record"

-- Third step /child::title

AND n4.Par=n3.Pre

AND n4.Type="elem" AND n4.Name="title"

ORDER BY n3.Pre;

In [7], Grust also described how the evaluation of descendant and
descendant-or-self axes can remarkably be accelerated by tightening the
query conditions for the pre- and postorder numbers of the descendant nodes.
Using this idea, the XPath query n1/descendant::record can be translated
into the following “accelerated” SQL query in which height denotes the height
of the tree:

SELECT DISTINCT n2.*

FROM Node n1, Node n2

WHERE n2.Pre>n1.Pre AND n2.Pre<=n1.Post + height

AND n2.Post<n1.Post AND n2.Post>=n1.Pre - height

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

However, if n1 is the root of the tree the query is not accelerated at all, since
every node in the tree has a preorder (postorder) number smaller (larger) than
the postorder (preorder) number of n1. In general, the closer to the root the
context node resides, the less will the query be accelerated.

The XML research literature knows several methods similar to pre-/postorder
encoding, such as the nested sets model [2] and the order/size scheme [6]. XRel
[5] makes use of region coordinates which tell the indexes of the first and last
character of the piece of text corresponding to an element, attribute or text
node. Nevertheless, all of these methods impose the nested relationships to be
checked using expensive nonequijoins.

4.2 Ancestor/Descendant Index

An extreme approach for modeling the nested relationships is to build an ances-
tor/descendant index, i.e., to explicitly maintain all ancestor/descendant pairs.

Supporting XPath Axes with Relational Databases Using a Proxy Index 105

In order to evaluate ancestor-or-self and descendant-or-self axes effi-
ciently, all nodes actually have to be in relation AncDesc with themselves, which
raises the storage requirements even higher. Nevertheless, this approach can pro-
vide good query performance, and thus it has been followed in [10], for instance.
To maintain the ancestor/descendant information, we use an AncDesc table:

Node(Pre, Par, Type, Name, Value)

AncDesc(Anc, Desc)

It is easy to find the query conditions for ancestor/descendant index; these
are presented in Table 4. Evaluating the ancestor and descendant axes involves
an equijoin on preorder numbers to ensure that the context node is not included
in the result of the location step. When evaluating following and preceding
axes, we use subqueries to filter the descendants and ancestors from the result.

Table 4. Ancestor/descendant index query conditions for performing the axes using
AncDesc tuple variable ai

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor ancestor-or-self AND NOT ni+1.Pre=ni.Pre

descendant descendant-or-self AND NOT ni+1.Pre=ni.Pre

ancestor-or-self ni+1.Pre=ai.Anc AND ai.Desc=ni.Pre

descendant-or-self ni+1.Pre=ai.Desc AND ai.Anc=ni.Pre

preceding ni+1.Pre<ni.Pre AND ni+1 NOT IN ancestor

following ni+1.Pre>ni.Pre AND ni+1 NOT IN descendant

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Using the query conditions presented in Table 4 and the additional query
conditions presented in Table 3, we can now translate the XPath query
n1/descendant::record into the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2, AncDesc a1

WHERE n2.Pre=a1.Desc AND a1.Anc=n1.Pre AND NOT n2.Pre=n1.Pre

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

It is worth noticing that in this query, there are no expensive nonequijoins,
and thus we can expect this query to run faster than the corresponding query
that is based on pre-/postorder encoding.

106 Olli Luoma

4.3 Ancestor/Leaf Index

Simply put, an ancestor/leaf index is an ancestor/descendant index built only
the leaf nodes as descendants. To maintain the ancestor/leaf information, we
employ an AncLeaf table:

Node(Pre, Par, Type, Name, Value)

AncLeaf(Anc, Leaf)

Obviously, the database attribute Leaf corresponds to the preorder number
of the leaf node and Anc corresponds to the preorder number of the ancestor of
the leaf node. Similarly to the ancestor/descendant approach, all leaf nodes are
in relation AncLeaf with themselves.

To evaluate all the axes using ancestor/leaf index, we first define a “spe-
cial axis” special which, for a Node tuple variable ni, can be evaluated us-
ing AncLeaf variables ai and bi with query conditions ni+1.Pre=ai.Anc AND
ai.Leaf=bi.Leaf AND bi.Anc=ni.Pre. In simple terms, the result of the special
axis contains all ancestors and descendants of the context node and the context
node itself. To filter the ancestors or descendants from the result of this query,
we can use the preorder numbers of the nodes, as presented in Table 5.

Table 5. Ancestor/leaf index query conditions for performing the axes

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor special AND ni+1.Pre<ni.Pre

descendant special AND ni+1.Pre>ni.Pre

ancestor-or-self special AND ni+1.Pre<=ni.Pre

descendant-or-self special AND ni+1.Pre>=ni.Pre

preceding ni+1.Pre<ni.Pre AND ni+1 NOT IN ancestor

following ni+1.Pre>ni.Pre AND ni+1 NOT IN descendant

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Using these query conditions and the additional query conditions presented
in Table 3, we can evaluate our example query n1/descendant::record using
the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2, AncLeaf a1, AncLeaf b1

WHERE n2.Pre=a1.Anc AND a1.Leaf=b1.Leaf AND b1.Anc=n1.Pre

AND n2.Pre>n1.Pre

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

Supporting XPath Axes with Relational Databases Using a Proxy Index 107

Although this query involves one nonequijoin on preorder numbers, it can
be evaluated quite efficiently, since most of the work can be carried out using
inexpensive equijoins. Provided that the database management system optimizes
the query correctly, the nonequijoin is very likely performed after the equijoins,
and thus the nonequijoin is performed on only a small number of tuples. To
avoid unnecessary disk I/O during queries, the AncLeaf table should be sorted
according to the database attribute Leaf.

5 Proxy Index

Both ancestor/descendant index and ancestor/leaf index suffer from the same
problem: they maintain a lot of redundant information. In this section, we thus
describe a proxy index as a method for representing the structural relationships
in a more compact manner. Our idea is to select a set of inner nodes to act as
proxy nodes and to maintain the ancestor/descendant information only for these
proxies. The concept of proxy node can formally be defined as follows:

Definition 1. Node n is a proxy node of level i, if the length of the path from
n to some leaf node is i or if n is the root node and the length of the path from
n to some leaf node is smaller than i.

To couple the proxy nodes together with their ancestors and descendants, we
use the relation ProxyReach:

Node(Pre, Post, Par, Type, Name, Value)

ProxyReach(Proxy, Reach)

In this schema, the database attribute Proxy corresponds to the preorder
number of the proxy node and Reach corresponds to the preorder number of
a node that is reachable from the proxy, i.e., a node that is an ancestor or
descendant of the proxy node or the proxy node itself.

Notice that each proxy node corresponds to an equivalence class induced by
an equivalence relation ≡pi on the leaf nodes defined as follows:

Definition 2. For any two leaf nodes n1 and n2, n1 ≡pi n2, iff there exists a
proxy node n3 of level i such that n3 is the nearest proxy node ancestor for both
n1 and n2.

Using this notion, we can now define the ancestor/leaf index as a proxy
index corresponding to the relation ≡p0. Obviously, the structural information
can be encoded more compactly by increasing the value of i. Building an index
corresponding to the relation ≡p1, however, will probably not get us far, since
in the case of typical XML trees, most leaf nodes are text nodes without any
siblings. Thus, with value 1 we will end up with almost as many tuples in the
ProxyReach table as with value 0. For this reason, our experimental evaluation
was carried out using value 2 which proved to provide a good balance between
query speed and storage consumption.

108 Olli Luoma

Similarly to the ancestor/leaf index, we use a “special axis” special which,
for a Node tuple variable ni, can be evaluated using ProxyReach variables ai

and bi with query conditions ni+1.Pre=ai.Reach AND ai.Proxy=bi.Proxy AND
bi.Reach=ni.Pre. Here, the result of the special axis contains all descendants
and ancestors of the proxy nodes that are reachable from ni. Thus, we can use
query conditions similar to those used in the pre-/postorder encoding approach
to filter the unwanted nodes from the result of the axis, as presented in Table 6.

Table 6. Proxy index query conditions for performing the axes

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor special AND ni+1.Pre<ni.Pre AND ni+1.Post>ni.Post

descendant special AND ni+1.Pre>ni.Pre AND ni+1.Post<ni.Post

ancestor-or-self special AND ni+1.Pre<=ni.Pre AND ni+1.Post>=ni.Post

descendant-or-self special AND ni+1.Pre>=ni.Pre AND ni+1.Post<=ni.Post

preceding ni+1.Pre<ni.Pre AND ni+1.Post<ni.Post

following ni+1.Pre>ni.Pre AND ni+1.Post>ni.Post

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Using these query conditions and the additional query conditions presented
in Table 3, we can evaluate our example query n1/descendant::record using
the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2, ProxyReach a1, ProxyReach b1

WHERE n2.Pre=a1.Reach AND a1.Proxy=b1.Proxy AND b1.Reach=n1.Pre

AND n2.Pre>n1.Pre AND n2.Post<n1.Pre

AND n2.Type="elem" AND n2.Name="record"

ORDER BY n2.Pre;

Although this query involves two nonequijoins, it can still be evaluated rather
efficiently, as explained in the section discussing ancestor/leaf index.

6 Experimental Results

This section presents the results of our experimental evaluation carried out using
MySQL 5.0 Alpha running on Windows XP and a 2.00 GHz Pentium PC with
512 MB of RAM and standard IDE disks. As in [9], the database schemas cor-
responding to pre-/postorder encoding (PP), ancestor/descendant index (AD),
ancestor/leaf index (AL), and proxy index (PR) were all extended with docu-
ment identifiers; the proxy index was built on relation ≡p2.

Supporting XPath Axes with Relational Databases Using a Proxy Index 109

6.1 Storage Requirements

To start with, we compared the storage consumption of the methods by storing
three different sets of XML documents into databases designed according to
PP, AD, AL, and PR2. For this purpose, we used the 1998 baseball statistics
and a collection of four religious texts, both available at [19]. We also studied
the storage requirements using a deeply nested and structurally complex XML
document generated with XMLgen [20] using factor 1. The database sizes in
both tuples and megabytes, as well as the sizes of original XML documents, are
presented in Table 7.

Table 7. Database sizes

PP AD AL PR
MB Tuples MB Tuples MB Tuples MB Tuples MB

Baseball 0.6 52707 3.6 393095 15.1 233142 9.9 110608 5.2
Religious 6.8 94616 11.7 599005 29.0 366178 20.6 195006 15.0
XMLgen 113 3221932 305 23134116 998 13952004 686 8339906 486

As can be seen in Table 7, PR performs quite well in terms of storage con-
sumption. Although PR consumes more storage than PP, the difference between
PP and PR is not nearly as significant as between PP and AD or AL. In the next
section, we will see that PR allows us to evaluate queries much more efficiently
than PP, which justifies the bigger database size.

6.2 Query Performance

We evaluated the query performance of the different approaches using synthetic
documents generated with XMLgen using factors 0.01, 0.02, 0.04, 0.08, 0.16, 0.32,
0.64, and 1.28. The sizes of these documents ranged approximately from 1.1 MB
to 146 MB. From each document, we randomly selected 20 context nodes, and
performed the parent, child, ancestor, descendant, following-sibling, and
preceding-sibling axes starting from these context nodes.

According to our experiments, the evaluation time of all axes grows linearly
with respect to the document size. Regardless of the document size, however, axes
parent, child, preceding-sibling, following-sibling, and descendant can
be evaluated in almost no time in all approaches, provided that the descendant
queries in PP are accelerated.

The results concerning the ancestor axis, on the contrary, reveal one of the
weaknesses of PP. Since this axis cannot be accelerated, the query evaluation
time in PP grows rapidly compared to other approaches. In approaches AD,
AL, and PR, not only the descendant axis, but also the ancestor axis can be

2 Auxiliary indexes were built on Node(Doc, Post) Node(Doc, Par), Node(Type),
AncDesc(Doc, Desc), AncLeaf(Doc, Leaf), Proxy(Doc, Reach), and the first five
characters of Node(Name).

110 Olli Luoma

evaluated very efficiently. Evaluating this axis using the largest test document,
for example, took almost 16 seconds in PP, whereas in AD, AL, and PR, almost
no time at all was needed. The results are presented in Fig. 1; all times are
averages for the 20 context nodes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 10 100

Q
ue

ry
 ti

m
e

(s
)

Document size (MB)

PP
AD
AL
PR

Fig. 1. Times for the ancestor axis (logarithmic scale for size)

As discussed section 4.1, the descendant and descendant-or-self axes are
not accelerated in PP if the root is the context node. This is actually a rather
serious drawback, since all queries based on absolute addressing traverse the tree
starting from the root. To exemplify this problem, Fig. 2 presents the query times
for the XPath query /descendant-or-self::open auction. According to these
results, the scalability of PP leaves a lot to be desired when the traversal starts
from the root. Also in AL, the query times grow rather rapidly, but both PR
and AD perform very well indeed even in the case of the largest test document.
Although the SQL queries in PR look similar to the queries in AL, PR clearly
outperforms AL, since it issues less disk accesses.

After these tests, we still wanted to see how the approaches perform when
a large set of context nodes is used. To do this, we stored the result sets of
our previous query //open auction into separate relations and performed the
location step /descendant-or-self::description starting from these node
sets; the size of the context node set varied from 120 to 15360. In these tests, PP
suffered from severe scalability problems with respect to the number of context
nodes. For instance, even in the case of the smallest test document, PP took
almost two minutes, whereas the other approaches needed less than a second,
which clearly supports our presentiments on the lack of scalability in PP. Indeed,
although the acceleration can make a substantial difference when the set of
context nodes is small, PP does not scale well with respect to the number of

Supporting XPath Axes with Relational Databases Using a Proxy Index 111

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Q
ue

ry
 ti

m
e

(s
)

Document size (MB)

PP
AD
AL
PR

Fig. 2. Times for query //open auction (logarithmic scale for size)

context nodes. PR performed better than AL and also in these tests, AD provided
the best performance. These results are presented in Fig. 3.

All in all, our results were similar to those obtained in [10] and [17]. It must
be pointed out that according to Grust [7], PP performs much better if the pre-
and postorder numbers are indexed using R-trees. The purpose of this study,
however, was to rely on standard relational database technology, and thus we
did not consider this possibility.

7 Conclusion and Future Work

In this paper, we discussed methods for modeling the nested relationships in
XML documents using relational databases. We also proposed a novel method,
namely a proxy index, which maintains the ancestor/descendant information
for a selected set of inner nodes. Our proposal makes it possible to check the
nested relationships mainly using equijoins instead of nonequijoins, and thus our
method can clearly outperform the widely used pre-/postorder encoding. Fur-
thermore, our method encodes the structural relationships in a compact manner,
and thus the storage consumption is low compared to other methods that model
the structural relationships explicitly.

It would be interesting to study how the approaches discussed in this paper
perform when relative addressing is used. Since PR performed quite well with
large sets of context nodes, we believe that our approach performs well also when
relative addressing of XPath is used. It would also be interesting to study how
different clusterings, i.e., orderings of the tuples, affect the performances of the
methods. Ordering the tuples according to their names instead of their preorder
numbers, for example, might provide good results.

112 Olli Luoma

 0

 50

 100

 150

 200

 1 10 100

Q
ue

ry
 ti

m
e

(s
)

Document size (MB)

PP
AD
AL
PR

Fig. 3. Times for query //open auction//description (logarithmic scale for size)

References

1. W3C. Extensible Markup Language (XML) 1.0.
http://www.w3c.org/TR/REC-xml.

2. A.B. Chaudri, A. Rashid, and R. Zicari. XML Data Management: Native XML
and XML-Enabled Database Systems. Addison-Wesley, 2003.

3. W3C. XML path language (XPath) 2.0. http://www.w3c.org/TR/xpath20.
4. W3C. XQuery 1.0: An XML query language. http://www.w3c.org/TR/xquery.
5. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A path-based

approach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technologies, 1(1): 110-141, 2001.

6. Q. Li and B. Moon. Querying XML data for regular path expressions. In Proc. of
the 27th Intl Conf. on Very large Databases, pages 361-370, 2001.

7. T. Grust. Accelerating XPath location steps. In Proc. of the 2002 ACM SIGMOD
Conf. on Management of Data, pages 109-120, 2002.

8. C. Zhang, J. Naughton, D. DeWitt, Qiong Luo, G. Lohman. On supporting con-
tainment queries in relational database management systems. In Proc. of the 2001
ACM SIGMOD Conf. on Management of Data, pages 425-436, 2001.

9. O. Luoma. Modeling nested relationships in XML documents using relational
databases. In Proc. of the 31st Annual Conf. on Current Trends in Theory and
Practice of Informatics, pages 259-268, 2005.

10. H. Jiang, H. Lu, W. Wang, and J. Xu Yu. Path materialization revisited: An
efficient storage model for XML data. In Proc. of the 13th Australasian Database
Conf., pages 85-94, 2002.

11. J. McHugh, S. Abiteboul, R. Goldman, R. Quass, and J. Widom. Lore: A database
management system for semistructured data. SIGMOD Record, 26(3): 54-66, 1997.

12. C.C. Kanne and G. Moerkotte. Efficient storage of XML data. Poster abstract in
Proc. of the 16th Intl Conf. on Data Engineering, page 198, 2000.

Supporting XPath Axes with Relational Databases Using a Proxy Index 113

13. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured docu-
ments to novel query facilities. In Proc. of the 1994 ACM SIGMOD Intl Conf. on
Management of Data, pages 313-324, 1994.

14. D. Florescu and D. Kossmann. A performance evaluation of alternative mapping
schemes for storing XML data in a relational database. Technical Report, INRIA,
1999.

15. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.J. DeWitt, and J.F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In Proc. of the 25th Intl Conf. on Very Large Databases, pages 302-
314, 1999.

16. R. Krishnamurthy, R. Kaushik, and J.F. Naughton. XML-to-SQL query translation
literature: The state of the art and open problems. In Proc. of the 1st Intl XML
Database Symposium, pages 1-18, 2003.

17. S. Prakash, S.S. Bhowmick, and S. Madria. SUCXENT: An efficient path-based
approach to store and query XML documents. In Proc. of the 15th Intl Conf. on
Database and Expert Systems Applications, pages 285-295, 2004.

18. P.F. Dietz. Maintaining order in a linked list. In Proc. of the 14th ACM Symposium
on Theory of Computing, pages 122-127, 1982.

19. http://www.ibiblio.org/xml/examples.
20. http://monetdb.cwi.nl/xml/index.html.

An Extended Preorder Index
for Optimising XPath Expressions

Martin F. O’Connor1, Zohra Bellahsène2, and Mark Roantree1

1 Interoperable Systems Group, Dublin City University, Ireland
{moconnor,mark.roantree}@computing.dcu.ie

2 LIRMM, UMR 5506 CNRS Université Montpellier II, France
bella@lirmm.fr

Abstract. Many of the problems with native XML databases relate to
query performance and subsequently, it can be difficult to convince tra-
ditional database users of the benefits of using semi- or unstructured
databases. Presently, there still lacks an index structure providing effi-
cient support for structural queries and the traditional data-centric and
content queries. This paper presents an extended index structure based
on the preorder traversal rank and the level (or depth) rank of each node
in a document tree. The extended index fully supports the navigation of
all XPath axes while efficiently supporting data-centric queries. The abil-
ity to start path traversals from arbitrary nodes in a document tree also
enables the extended index to support the evaluation of path traversals
embedded in XQuery expressions. Furthermore, an encoding technique
is presented where properties of the level ranking may be exploited to
provide efficient and optimised level-based XPath evaluations.

1 Introduction

XML has been adopted as the new standard for data exchange on the World
Wide Web and increasingly so in industry as the standard data interchange for-
mat. The key ingredient to its successful adoption is the expressive and extensible
nature of XML. The basic structure underlying XML is the tree, which repre-
sents semi-structured data. Semi-structured data consists of an irregular and
non-uniform organisation; it may have data with missing attributes and some
attributes may be of different types within different data items. All of these
variations are acceptable in XML documents. Thus, it may be seen that XML
provides for an unlimited number for tree dialects, some of which have been
formally described by Document Type Descriptors (DTDs) or XML Schemas,
while others are employed in an ad-hoc schema-less manner. The database com-
munity is well advanced in adapting its technology to host large XML collections
and to query these collections efficiently. It will be essential, though, that these
new technologies support the XML query language specifications such as XPath
[13] and XQuery [12]. These specifications are key enablers in maintaining the
interoperability among XML repositories.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 114–128, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Extended Preorder Index for Optimising XPath Expressions 115

1.1 Motivation
The operations and path traversals required in the querying of tree structured
data present difficult challenges. There has been much activity on the specifica-
tion and provision of extensions to existing indexing mechanisms and processing
models to enable the efficient exploitation of the structural properties of XML.
The goal of this activity is to support, not only rapid navigational or structural
queries but efficient content-based queries as well [1] [15]. There have also been
several proposals [5] [7] for new index structures to deal with these problems.
However, virtually all of the proposals focus on support for step evaluation along
the child and descendant-or-self axes, to the detriment of the remaining XPath
axes. Moreover, these proposals often rely on query processing algorithms which
call for implementation techniques that lie outside their natural domain. An ex-
ample is the relational domain where such proposals incur associated drawbacks
such as additional software layers and transactional and performance issues. In-
deed, as trees in their abstract form may be queried using path expressions, the
XPath language was defined to model and query an XML document as a tree
of nodes. The XQuery specification moreover facilitates embedded path traver-
sals that may commence from any arbitrary node. Presently, there still lacks
an index structure facilitating embedded XPath traversals from arbitrary nodes
while providing at the same time, efficient and optimised XPath traversal evalu-
ations incorporating both structural and navigational queries and the traditional
content and data-centric queries. Our PreLevel Index structure fills this gap.

1.2 Contribution
In this paper, we present a new tree encoding mechanism based solely on the pre-
order traversal rank and the level (or depth) rank of each node in the document
tree. We define new conjunctive range predicates based on our tree encoding
to support the evaluation of location steps along the principle XPath axes and
provide proofs to validate them. We then present an Extended Index structure
(hereafter, referred to as the PreLevel Structure) based on our tree encoding
that fully supports all XPath axes. Both the preorder traversal rank and level
rank values may be determined during the initial parsing of the XML document
and thus, the PreLevel Structure has minimal computational overhead associ-
ated with its construction. The ability to start traversals from arbitrary context
nodes in an XML tree also enables the PreLevel Structure to support the evalua-
tion of path traversals embedded in XQuery expressions. Furthermore, using our
PreLevel Structure, the properties of the level rank of a node may be exploited
to provide efficient and optimised level-based XPath evaluations.

The paper is organised as follows: Section 2 reviews the partition property of
the XPath language and presents our PreLevel encoding and the newly derived
conjunctive range predicates that facilitate XPath axis navigation, together with
formal proofs of their derivation. Section 3 presents the tabular representation of
the PreLevel Structure, explaining its construction and illustrating an evaluation
of a step location along the descendant axis. Section 4 highlights various features
of the PreLevel Structure and outlines some of the optimised XPath queries
possible. Section 5 reviews related work and we conclude in Section 6.

116 Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

2 Presenting the PreLevel Structure Encoding

In this section, the XPath partition property is reviewed and the PreLevel en-
coding mechanism is introduced. For each of the primary XPath axes, the new
conjunctive range predicates for performing a location step along the axis are
presented and the corresponding proofs provided. The conjunctive range pred-
icates have been derived from the intrinsic properties of the preorder traversal
ranks and level ranks alone.

2.1 XPath Partition Property

The basic data type underlying XML is the tree. Thus, the XPath language
was defined to model and query an XML document as a tree of nodes. The
XPath 2.0 working draft [13] also specifies the following partitioning property:
the ancestor, descendant, preceding, following and self axes partition an
XML document (ignoring attribute and namespace nodes), partitions are disjoint
and together they contain all nodes in the XML document. Thus, as a given
context node resides in the self axis, all other nodes in the XML document fall
into one of four partitions, as identified by the axes specified above (hereafter
referred to as the primary axes).

2.2 The PreLevel Encoding

The PreLevel structural index is an extension to the XPath Accelerator presented
in [2]. The PreLevel encoding is based solely on the preorder traversal rank
encoding and a level rank encoding. The size information is not recorded as in the
encoding mechanism in [3]. The level (or depth) function takes one parameter, a
node, and returns the level rank value of the node. Figure 1(a) depicts a sample
XML document and Figure 1(b) depicts the corresponding XML tree with a
preorder and level rank encoding.

Thus, level(v) = m if the path from the root of the tree to the node v
has length m; for example, level(a) = 0 and level(f) = 2. The XPath Parti-
tion property introduced in Section 2.1 is preserved by the combined preorder
traversal and level rank encoding. The remaining XPath axes (parent, child,
descendant-or-self, ancestor-or-self, following-sibling and preceding-
sibling) determine either supersets or subsets of one of the primary axes and
may be evaluated from them.

2.3 Navigating the Descendant Axis

The descendant axis selects all children of the given context node, and their
children recursively, with the resulting nodes in document order [13]. The new
conjunctive range predicate defining a location step along the descendant axis,
based on the PreLevel encoding, is as follows:

An Extended Preorder Index for Optimising XPath Expressions 117

<a>

</c>

<d></d>

<e>

<f></g></h></f>

<i></j></i>

</e>

(a) Sample XML
document

a

b e

c

d

f

g
h

i

j

L0

L1

L2

L3

0

1

2

3

4

5

6 7

8

9

(b) PreLevel encoded XML
tree.

Fig. 1. Sample XML document and associated PreLevel encoded tree.

Lemma 1.

v ∈ c/descendant ⇔ pre(v) > pre(c) (i)
∧ level(v) > level(c) (ii)
∧ ∀x : pre(x) ∈ (pre(c) , pre(v)) (iii)

⇒ level(x)
= level(c)

Lemma 1 states that an arbitrary node v is a descendant of a given context
node c if and only if:

(i) the preorder rank of v is greater than the preorder rank of c, and
(ii) the level rank of v is greater than the level rank of c, and
(iii) for all nodes (let us label them x) having a preorder rank greater

than pre(c) and less than pre(v), that none of those nodes have a
level rank the same as level(c).

Proof: Condition (i) ensures that the preorder rank of node v is greater than the
preorder rank of the context node c. In essence, the first condition exploits the
properties of preorder traversal to ensure that the arbitrary node v appears, in
document order after the given context node c. Condition (ii) ensures the level
rank of node v is greater than the level rank of node c. Conditions (i) and (ii) are
intuitive if node v is to be a descendant of node c. The third condition ensures
that node v does not have another ancestor at the same level as the given
context node c. If there is another ancestor at the same level as the context
node c, then the context node could not be the ancestor of node v. This can be
stated with certainty due to the properties of preorder traversal - namely that
a node is visited immediately before its children, and the children are visited
from left to right. So, if there is another node at the same level as node c, then
that node must have a higher preorder rank than node c but also a preorder
rank less than node v (the range requirement of condition (iii) ensures this).
Thus, although the identity of the ancestor at level(c) has not been definitely
established, it has been definitively determined that the ancestor of node v
cannot be node c – by finding any other node at the same level and within the
range specified. Only if there is no node at the same level as the context node c
and within the range specified, can it be stated with certainty that the context
node c is an ancestor of node v, and conversely that node v is a descendant
of the context node c.

118 Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

An illustration of Lemma 1 now follows. While referring to the conjunctive
range predicate in Lemma 1 and to the illustration in Figure 2; let v = node h;
let c = node e. To determine if node h is a descendant of the context node e,
one must examine the conditions:

(i) Is pre(h) > pre(e)...(7 > 4)...condition holds true.
(ii) Is level(h) > level(e)...(3 > 1)...condition holds true
(iii) For all nodes whose preorder rank is greater than pre(e) and less than

pre(h), these nodes are located within the shaded area in Figure 2,
do any of them have a level rank the same as level(e), in this case 1?
No, they do not and therefore, the condition holds true.

All three conditions are true, thus node h is a descendant of the context node c.

a

b

c

d

e

f

g
h

i

j

0

1

2

3

4

5

6 7

8

9

0

1

2

1

1

2 2

3 3 3

Fig. 2. Example of navigating the descendant axis of a PreLevel encoded XML tree.

Now, let us take an example whereby the conjunctive range predicate will
return false. By following the above example, but assigning node d to be the
context node c, conditions (i) and (ii) hold true, but condition (iii) fails because
node e has the same level rank as node d.

2.4 Navigating the Ancestor Axis

The ancestor axis selects all nodes in the document that are ancestors of a
given context node [13]. Thus, the new conjunctive range predicate defining a
location step along the ancestor axis, based on the PreLevel encoding, is:

Lemma 2.

v ∈ c/ancestor ⇔ pre(v) < pre(c) (i)
∧ level(v) < level(c) (ii)
∧ ∀x : pre(x) ∈ (pre(v) , pre(c)) (iii)

⇒ level(x)
= level(v)

Lemma 2 states that an arbitrary node v is an ancestor of a given context node
c if and only if:

(i) the preorder rank of v is less than the preorder rank of c, and
(ii) the level rank of v is less than the level rank of c, and
(iii) for all nodes (let us label them x) having a preorder rank greater

than pre(v) and less than pre(c), that none of those nodes have a
level rank the same as level(v).

An Extended Preorder Index for Optimising XPath Expressions 119

Proof: Condition (i) exploits the properties of preorder traversal to ensure the
arbitrary node v appears in document order before the given context node c.
Condition (ii) exploits the level rank properties to ensure node v appears higher
in the document tree than node c. Condition (iii) ensures that the given context
node c does not have another ancestor at the same level as node v. If there
is any other node at the same level as node v, then node v could not be the
ancestor of the context node c. This can be stated with certainty due to the
properties of preorder traversal – namely that a node is visited immediately
before its children, and the children are visited from left to right. So, if there is
another node at the same level as node v, then that node must have a higher
preorder rank than node v but also a preorder rank less than the context node c
(the range requirement of condition (iii) ensures this). Only if there is no node
at the same level as node v and within the range specified, can it be stated with
certainty that node v is an ancestor of the context node c.

2.5 Navigating the Preceding Axis

The preceding axis selects all nodes in document order that appear before the
given context node, excluding all ancestors of the context node [13]. The new
conjunctive range predicate, based on the PreLevel encoding, defines a location
step along the preceding axis as follows:

Lemma 3.

v ∈ c/preceding ⇔ pre(v) < pre(c) (i)
∧ ∃x : pre(x) ∈ (pre(v) , pre(c)] (ii)

⇒ level(x) ∈ (0 , level(v)]

Lemma 3 states that an arbitrary node v is member of the preceding axis of a
given context node c if and only if:

(i) The preorder rank of v is less than the preorder rank of c, and
(ii) There exists a node (let us label it x) whose preorder rank is greater

than pre(v) and less than or equal to pre(c), and that the level rank
of x is less than or equal to level(v).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the
arbitrary node v appears, in document order, before the given context node c.
Condition (ii) ensures that node v is not an ancestor of the context node c. Due
to the properties of preorder traversal, the existence of any other node which has
a preorder rank greater than pre(v) and less than or equal to pre(c), and which
has a level rank less than or equal to node v, rules out any possibility that node
v is the ancestor of node c. Thus, conditions (i) and (ii) together ensure that
an arbitrary node v is a member of the preceding axis of given context node c.

2.6 Navigating the Following Axis

The following axis selects all nodes that appear after the given context node in
document order, excluding the descendants of the context node [13]. The new

120 Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

conjunctive range predicate defining a location step along the following axis
based on the PreLevel encoding is:

Lemma 4.

v ∈ c/following ⇔ pre(v) > pre(c) (i)
∧ ∃x : pre(x) ∈ (pre(c) , pre(v)] (ii)

⇒ level(x) ∈ (0 , level(c)]

Lemma 4 states that an arbitrary node v is member of the following axis of a
given context node c if and only if:

(i) The preorder rank of v is greater than the preorder rank of c, and
(ii) There exists a node (let us label it x) whose preorder rank is greater

than pre(c) and less than or equal to pre(v), and that the level rank
of x is less than or equal to level(c).

Proof: Condition (i) exploits the properties of preorder traversal to ensure the
arbitrary node v appears in document order after the given context node c.
Condition (ii) ensures that node v is not a descendant of the context node c.
The second condition is validated by verifying that there is another node, with a
preorder rank greater than pre(c) and less than or equal to pre(v), and which has
a level rank less than or equal to the level rank of the context node c. If any such
node exists, then due to the properties of preorder traversal - namely that a node
is visited immediately before its children and the children are visited from left
to right - the context node c cannot be the ancestor of node v, and conversely
node v cannot be the descendant of the context node c. Thus, conditions (i)
and (ii) together ensure that an arbitrary node v is a member of the following
axis of given context node c.

3 Extended Index Structure

In this section we present a tabular representation for the PreLevel encoding that
facilitates optimised algorithms for the efficient evaluation of XPath expressions.
We adapt the tabular encoding of the XPath Accelerator originally proposed in
[2] and extend it to incorporate our Extended Preorder Index and Level Index.

3.1 Tabular Encoding

The PreLevel encoding facilitates a tabular representation of XML documents,
namely the Extended Preorder Index. The primary column of the Extended Pre-
order Index consists of the preorder ranks sorted in ascending order. The second
column contains the level ranks that correspond to the associated preorder ranks
of the primary column. Extra columns may be added to the Extended Preorder
Index to hold further node properties as defined by the XPath/XQuery data
model, such as name, node type (node, element, attribute, comment) and more.
In particular, to support the parent axis in our tabular encoding, we add a

An Extended Preorder Index for Optimising XPath Expressions 121

column containing the parent’s preorder rank of each node to the Extended Pre-
order Index. However, in order to efficiently evaluate an XPath location step
along all of the XPath axes, a second index is required. This second index is in-
troduced (hereafter referred to as the Level Index) and consists of two columns
only, the level rank column and the preorder rank column. The first column in
the Level Index is the level rank column, sorted in ascending order, the second
column being the preorder rank column, again sorted in ascending order. The
Extended Preorder Index and Level Index combined may also be referred to as
the PreLevel Structure. Several observations should be made at this point.

– Both the preorder ranks and the level ranks may be determined during the
initial parsing of the XML document tree, and thus have minimal computa-
tional overheads associated with them.

– Each node in the XML tree has a single preorder rank and a single level rank
associated with it. Thus, the Extended Preorder Index contains a one-to-one
mapping. However, as many nodes may reside at the same level, the Level
Index contains a one-to-many mapping - it is an inverted index.

– Both the Extended Preorder Index and the Level Index can be constructed
in parallel during the initial parsing of the XML document tree. The act of
parsing of an XML document (reading from top to bottom and left to right)
corresponds to a preorder traversal. Thus, the Extended Preorder Index is
constructed in a sorted list, sorted on the preorder rank in ascending order.
It may not be obvious that the Level Index is also constructed in a sorted
list. When the preorder traversal begins, the level information is recorded
also (level 0 for the root node). As the preorder traversal progresses, all
new levels and the associated preorder ranks are recorded. As the preorder
traversal encounters nodes on a level already recorded, the preorder ranks
are simply appended to the list of existing preorder ranks at that level.
Thus, depending on the structure used at implementation time, for example
a linked list, when the preorder traversal has been completed, we are left
with a column of unique level ranks, sorted in ascending order with each
level rank pointing to a linked list of preorder ranks and each linked list also
sorted in ascending order.

– Lastly, in order to facilitate a lookup of the Level Index in constant time, a
position column is included in the Extended Preorder Index. During the con-
struction of the Level Index, before any preorder ranks have been inserted,
each level is assigned a counter initialised to zero. As a preorder rank is added
(or appended) to the Level Index, the counter at that level is incremented by
one and its value is written in the position column of the Extended Preorder
Index, in the row of the related preorder rank. Thus, the position value, when
obtained using a lookup of the Extended Preorder Index, facilitates a direct
jump to a given preorder rank within the Level Index in constant time. The
position column is the key to enabling the evaluation of location steps on
the primary XPath axes in constant time and to the optimised evaluations
of level-based queries (to be introduced in §4.2).

122 Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

The main issue is to compute the conjunctive range predicates for each of the
XPath primary axes in constant time. This is demonstrated in Section 3.2.

3.2 Example of an Evaluation Along the Descendant Axis

The sample PreLevel encoded tree and the corresponding PreLevel Structure,
are illustrated in Figure 3. A high level algorithm detailing the steps to evalu-
ate a location step along the descendant axis in constant time is provided in
Algorithm 1.

a

b

c

d

e

f

g h

i

j

0

1

2

3

4

5

6 7

8

9

0

1

2

1

1

2 2

3 3 3

(a) A PreLevel encoded
XML tree

8

4

5

5

4

0

0

1

0

Parent

3

3

2

1

2

3

2

1

1

1

Pos

IElem28

JElem39

HElem37

GElem36

FElem25

EElem14

DElem13

CElem22

BElem11

AElem00

…NameKindLevelPre

8

4

5

5

4

0

0

1

0

Parent

3

3

2

1

2

3

2

1

1

1

Pos

IElem28

JElem39

HElem37

GElem36

FElem25

EElem14

DElem13

CElem22

BElem11

AElem00

…NameKindLevelPre

(b) Extended Preorder Index

6, 7, 93

2, 5, 82

1, 3, 41

00

PreLevel

6, 7, 93

2, 5, 82

1, 3, 41

00

PreLevel

(c) Level In-
dex

Fig. 3. Sample XML tree and the corresponding PreLevel Structure.

Let us now illustrate Algorithm 1. Let v = node h; let c = node e; nodes
are represented by their preorder rank. It can be verified that pre(h) is greater
than pre(e) (i.e. 7>4), and that level(h) is greater than level(e) (i.e. 3>1). The
Level Index is used to identify the next preorder rank greater than pre(e) at
level(e) (i.e. null). This information is obtained in constant time as the position
column of the Extended Preorder Index facilitates a direct jump to pre(e) within
the level(e) index. Note, the next preorder rank greater than pre(e) at level(e),
should it exist, must appear immediately after pre(e) because the index is sorted
in ascending order. If the next preorder rank after pre(e) at level(e) is greater
than pre(h), the node being tested, then node h must be a descendant of node e.
This can be stated with certainty as the properties of preorder traversal require
a node’s children to be visited immediately after its parent. Also, as in this case,
if there are no preorder ranks greater than pre(e) at level(e), indicated with null,
node h must be a descendant of node e. The fact that there may be no preorder
ranks greater than pre(e) at level(e) simply means that node e is the root node
of the rightmost subtree rooted at level(e).

This subsection has illustrated an evaluation of a location step along the
descendant axis in constant time, however an evaluation along the ancestor
axis in constant time may be illustrated in a similar fashion by adapting the
algorithm appropriately. An evaluation along the following and preceding

An Extended Preorder Index for Optimising XPath Expressions 123

Algorithm 1 To determine if an arbitrary node v is a descendant of a given
context node c
Name: IsNodeDescendant
Given: An arbitrary node v , a context node c.
Returns: Boolean (TRUE or FALSE)
begin

//Using the Extended Preorder Index

if (pre(v) <= pre(c)) or (level(v) <= level(c)) then
return FALSE;

endif
//Using the Level Index

next pre := next preorder rank after pre(c) at level(c);
if (next pre > pre(v)) or (next pre == null) then

return TRUE;
else

return FALSE;
endif

end

axes may also be evaluated in constant time however lack of space prevents this
demonstration here but may be referenced in [8].

4 Optimised XPath Queries

The PreLevel Structure enables an efficient encoding mechanism that supports
highly optimised structural and navigational queries as well as content and data-
centric queries.

4.1 Evaluating the Size of a Subtree

Using our PreLevel Structure, the size of a subtree tree rooted at an arbitrary
node v can be determined very efficiently. The evaluation of the subtree size is
independent of the actual size of the subtree (and indeed the size of the entire
document tree) but rather dependent on the number of levels between the given
node v and the root node of the entire document tree. In [6], a comprehensive
study of over 190,000 XML trees was performed revealing that 99% of all the
documents had less than 8 levels. The vast majority of the remaining 1% of
documents had less than 30 levels, with only a tiny fraction having more than
30 levels. Thus, it may be seen that the number of levels (or depth) in an XML
tree is sufficiently small so as to be deemed to have a minimal computational
impact on our evaluation. The size of the subtree evaluated with our algorithm
is accurate and no extra information beyond the preorder and level ranks are
necessary to determine the size of the subtree. A more detailed explanation
of this algorithm may be found in [8]. An algorithm demonstrating the steps
required to evaluate the size of a subtree rooted at an arbitrary node v using
our PreLevel Structure is provided in Algorithm 2.

124 Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

Algorithm 2 To determine the size of subtree rooted at an arbitrary node v
Name: SizeOfSubtree
Given: An arbitrary node v ,

The maximum preorder rank in document tree max pre.
Returns: subtree size
begin

//Using the Extended Preorder Index, determine if node v is a leaf node

if (level(pre(v) + 1) <= level (v)) then subtree size := 1;
return subtree size;

endif
//Using the Level Index

next pre := next preorder rank after pre(v) at level(v);
//limit will contain the maximum upper preorder rank of the preorder interval (non-inclusive)
//specifying the subtree nodes.

limit := next pre;
init level := level(v) - 1;
//par(v) returns the preorder rank of the parent node of v

par pre := par(v);
//For each level between level(v) and root node, find first node with preorder rank > pre(v)

for (count = init level; count > 0; count --)
next pre := next preorder rank after par pre at level(par pre);
if (limit != null) then

if (next pre != null) and (next pre < limit) then limit := next pre;
endif

endif
par pre := par(par pre);

endfor
if (limit != null) then subtree size := limit - pre(v);
else subtree size := (max pre - pre(v)) + 1;
endif
return subtree size;

end

The SizeOfSubtree function facilitates the efficient evaluation of all members
of the descendant and following axes of a given node v. By exploiting the par-
ent column in the Extended Preorder Index we can also very efficiently evaluate
all members of the ancestor and preceding axes for any given arbitrary node
v. The remaining XPath axes (parent, child, descendant-or-self, ancestor-
or-self, following-sibling, and preceding-sibling) determine either supersets
or subsets of one of the primary axes and may be evaluated from them.

4.2 Optimised Level-Based Queries

The PreLevel Structure makes a notable contribution to the efficient processing
of XPath expressions by facilitating optimised evaluations of level-based queries.
A level-based query is such that the results of the query reside at a particular
level in the XML tree.

Taking the descendant axis as an example, all nodes that are a descendant
of an arbitrary node v will reside in a preorder-defined interval, delimited by

An Extended Preorder Index for Optimising XPath Expressions 125

lower and upper preorder ranks. Thus, using our Level Index, it is easy to identify
a sequence of nodes residing at a particular level that belong to a preorder-defined
interval. For example, given a query to select all grandchildren of an arbitrary
node v ; the result of such a query will be represented using the Level Index as
an interval or array with lower and upper preorder bounds residing at a specific
level. The position column of the Extended Preorder Index facilitates a direct
jump to the lower and upper preorder bounds within the Level Index.

The Level Index is sorted in ascending order and can be searched very ef-
ficiently using a binary search algorithm with a time complexity of O(lg n).
The lower bound of the preorder interval containing node v ’s descendants at
a given level l, is obtained by performing a binary search at level l for the first
preorder rank greater than pre(v). In a similar fashion, the upper bound of the
preorder interval containing node v ’s descendants at a given level l, is obtained
by performing a binary search at level l for the last preorder rank preceding a
container preorder rank of node v ’s descendants. A container preorder rank is
a preorder rank greater than the largest preorder rank in node v ’s descendants.
Due to the properties of preorder traversal, a valid container preorder rank for
node v ’s descendants is the next preorder rank greater than pre(v) at level(v).
The container preorder rank can be obtained in constant time using a lookup of
the Level Index and provides an upper bound for node v ’s descendants at an
arbitrary level l.

Thus, given the preorder rank of a context node, the upper and lower bounds
of the interval containing the context node’s descendants at an arbitrary level
l can be obtained using the Level index, requiring only two lookup operations of
time complexity O(lg n) each, at level l. The processing of nodes at intermediary
levels is unnecessary for all levels between the context node and the level to be
queried.

The optimal time complexity for reading n values from an array of size n is
linear, i.e. O(n). Thus, given that the results of a level-based query is an array
subset of the Level Index, which is always sorted in document order; and given
that the position column of the Extended Preorder Index facilitates a direct
jump to the lower and upper preorder bounds within the Level Index; when
both lower and upper bounds of the interval have been obtained, the actual
results of the level-based query may be retrieved in optimal time. Indeed, once
the interval is know, the solution is optimal for retrieving all descendants of a
given node v that reside at an arbitrary level l. A sample algorithm to evaluate
all descendants of a given node v residing at an arbitrary level l is provided in
Algorithm 3.

In a similar fashion, the solution for identifying all members of the following-
sibling and preceding-sibling axes are also optimal. It should be noted that
queries along the descendant, descendant-or-self and child axes of an ar-
bitrary node constitute the core of XPath subexpressions embedded in XQuery
statements and provide the most challenging and highly computational tasks for
XPath/XQuery processors.

126 Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

Algorithm 3 To determine all the descendants of an arbitrary node v at a
given level m
Name: AllDescendantsAtLevelM
Given: An arbitrary node v ,

The maximum preorder rank in document tree max pre,
A level m, where m is the path length from root node to node v .

Returns: A sequence of document nodes labelled descendants or the empty sequence
begin

//Using Extended Preorder Index, determine if v is a leaf node

if (level(pre(v) + 1) <= level (v)) then
return empty sequence;

endif
//Using the Level Index

next pre := next preorder rank after pre(v) at level(v);
//Convert relative level rank to absolute level rank of document tree.

queryLevel := level(v) + m;
if (next pre != null) then

start pre := next preorder value > pre(v) at queryLevel;
descendants = all nodes in interval [start pre , next pre) at queryLevel;

else
descendants = all nodes in interval (pre(v) , max pre] at queryLevel;

endif
return descendants;

end

5 Related Work

In [11], the experience of building Jungle, a secondary storage manager for Galax,
an open source implementation of the family of XQuery 1.0 specifications is pre-
sented. They chose to implement the Jungle XML indexes using the XPath
Accelerator. However, one significant limitation they encountered was the eval-
uation of the child axis, which they found to be as expensive as evaluating
the descendant axis. They deemed this limitation to be unacceptable and de-
signed their own alternative indexes to support the child axis. Although the
XPath Accelerator pre/post encoding scheme has since been updated in [3] to
use pre/level/size, which Jungle has yet to incorporate, our PreLevel Structure
as demonstrated in Section 4.2 supports highly efficient evaluations of not just
children, but grandchildren and indeed all nodes at any particular level of an
arbitrary node. The ability to efficiently evaluate level-based queries by consid-
ering only the nodes at the level concerned and eliminating the need for large
scale processing at the intermediary levels, is the principle contribution of the
PreLevel Structure. The Jungle implementation experience also highlighted the
significant overhead imposed at document loading time by a postorder traver-
sal, a necessary component in the construction of the indexing system proposed
in [14].

There has been much research into the development and specification of new
indexing structures to efficiently exploit the properties of XML. There have been

An Extended Preorder Index for Optimising XPath Expressions 127

several initiatives to extend the relational data model to facilitate the XML data
model and once again the XPath Accelerator has been at the forefront [4] [1]
[15]. In [10], the key issue of whether the ordered XML data model can be ef-
ficiently represented by the relational tabular data model is examined and the
authors propose three new encoding methods to support their belief that it can.
In [5], a new system called XISS is proposed for indexing and storing XML data,
specifying three new structures to support content queries, and a new number-
ing scheme, based on the notion of extended preorder to facilitate the evaluation
of ancestor-descendant relationships between elements and attributes in con-
stant time. In [9], a hierarchical labelling scheme called ORDPATH, implemented
in the upcoming version of Microsoft SQL Server, is proposed. Each node on an
XML tree is labelled with an ordinal value, a compressed binary representation
of which, provides efficient document ordering evaluation as well as structural
evaluation. In addition, the ORDPATH scheme supports insertion of new nodes
in arbitrary positions in the XML tree, without requiring the re-labelling of any
nodes.

6 Conclusion

There is an urgent need for an indexing structure capable of supporting very
efficient structural, navigational and content-based queries over both document-
centric and data-centric XML. Our PreLevel Structure makes a significant con-
tribution toward this goal. In this paper we have presented a new tree encoding
mechanism based solely on the preorder traversal rank and the level rank of a
node. We constructed new conjunction range predicates based on the PreLevel
encoding to support the evaluation of location steps along the primary XPath
axes and provided proofs of their derivation. We then presented a tabular encod-
ing for our PreLevel Structure – the Extended Preorder Index and Level Index –
to enable the navigation of all XPath axes and demonstrated how these indexes
have a minimal computational overhead associated with their construction. The
tabular representation of the PreLevel Structure allows for flexible implementa-
tion strategies. Finally, accompanied by several algorithms, we detailed how our
tabular encoding facilitates efficient XPath queries and expression evaluations.
In particular, the properties of the Level index may be exploited to provide
highly optimised level-based query evaluations as well as the optimal retrieval
of their results.

As part of our future work, we are investigating the possibility of supporting
efficient XML updates. In tandem with our research, we have short listed several
open-source native XML databases and are examining them with a view to
providing an implementation of our work to date.

References

1. Daniela Florescu and Donald Kossmann. Storing and Querying XML Data using
an RDMBS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

128 Martin F. O’Connor, Zohra Bellahsène, and Mark Roantree

2. Torsten Grust. Accelerating XPath Location Steps. In Proceedings of the 2002
ACM SIGMOD International Conference on the Management of Data, volume 31,
pages 109–120. SIGMOD Record, ACM Press, 2002.

3. Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts. In Proceed-
ings of the 30th International Conference on Very Large Databases (VLDB), pages
252–263. Morgan Kaufmann, 2004.

4. Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue–XQuery:
Fluent. In 1st Twente Data Management Workshop on XML Databases and Infor-
mation Retrieval. Enschede, The Netherlands, 2004.

5. Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for Regular
Path Expressions. In Proceedings of the 27th International Conference on Very
Large Databases (VLDB), pages 361–370. Morgan Kaufmann, 2001.

6. Laurent Mignet, Denilson Barbosa, and Pierangelo Veltri. The XML Web: A
First Study. In Proceedings of the 12th International World Wide Web Confer-
ence (WWW2003), pages 500–510. ACM Press, 2003.

7. Tova Milo and Dan Suciu. Index Structures for Path Expressions. In Proceedings of
the 7th International Conference on Database Theory, pages 277–295. LNCS 1540,
Springer, 1999.

8. Martin O’Connor, Zohra Bellashène, and Mark Roantree. Level-based Indexing for
Optimising XPath Expressions. Technical report, Interoperable Systems Group,
Dublin City University, 2005. Available from:
www.computing.dcu.ie/~isg/technicalReport.html.

9. Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller, and
Nigel Westbury. ORDPATHs: Insert-Friendly XML Node Labels. In Proceedings of
the 2004 ACM SIGMOD International Conference on the Management of Data,
volume 33, pages 903–908. SIGMOD Record, ACM Press, 2004.

10. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Chun Zhang. Storing and Querying Ordered XML using a
Relational Database System. In Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on the Management of Data, volume 31, pages 204–215. SIG-
MOD Record, ACM Press, 2002.

11. Avinash Vyas, Mary F. Fernández, and Jérôme Siméon. The Simplest XML Storage
Manager Ever. In Proceedings of the 1st International Workshop on XQuery Im-
plementation, Experience and Perspectives <XIME-P/> in cooperation with ACM
SIGMOD, pages 37–42, 2004.

12. World Wide Web Consortium. XQuery 1.0: An XML Query Language, W3C Work-
ing Draft edition, April 2005.

13. World Wide Web Consortium. XML Path Language (XPath) 2.0, W3C Working
Draft edition, February 2005.

14. Pavel Zezula, Giuseppe Amato, Franca Debole, and Fausto Rabitti. Tree Signatures
for XML Querying and Navigation. In Proceedings of the 1st International XML
Database Symposium 2003, pages 149–163. Springer, September 2003.

15. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On Supporting Containment Queries in Relational Database Manage-
ment Systems. In Proceedings of the 2001 ACM SIGMOD International Confer-
ence on the Management of Data, volume 30, pages 425–436. SIGMOD Record,
ACM Press, 2001.

XPathMark: An XPath Benchmark
for the XMark Generated Data

Massimo Franceschet1,2

1 Informatics Institute, University of Amsterdam
Kruislaan 403 – 1098 SJ Amsterdam, The Netherlands

2 Dipartimento di Scienze, Università “Gabriele D’Annunzio”
Viale Pindaro, 42 – 65127 Pescara, Italy

Abstract. We propose XPathMark, an XPath benchmark on top of
the XMark generated data. It consists of a set of queries which covers
the main aspects of the language XPath 1.0. These queries have been
designed for XML documents generated under XMark, a popular bench-
mark for XML data management. We suggest a methodology to evaluate
the XPathMark on a given XML engine and, by way of example, we eval-
uate two popular XML engines using the proposed benchmark.

1 Introduction

XMark [1] is a well-known benchmark for XML data management. It consists
of a scalable document database modelling an Internet auction website and a
concise and comprehensive set of XQuery queries which covers the major aspects
of XML query processing.

XQuery [2] is much larger than XPath [3], and the list of queries provided in
the XMark benchmark mostly focuses on XQuery features (joins, construction
of complex results, grouping) and provides little insight about XPath character-
istics. In particular, only child and descendant XPath axes are exploited. In
this paper, we propose XPathMark [4], an XPath 1.0 benchmark for the XMark
document database. We have developed a set of XPath queries which covers
the major aspects of the XPath language including different axes, node tests,
Boolean operators, references, and functions. The queries are concise, easy to
read and to understand. They have a natural interpretation with respect to the
semantics of XMark generated XML documents. Moreover, we have thought
most of the queries in such a way that the sizes of the intermediate and final re-
sults they compute, and hence the response times as well, increase as the size of
the document grows. XMark comes with an XML generator that produces XML
documents according to a numeric scaling factor proportional to the document
size.

The targets of XPathMark are:

– functional completeness, that is, the ability to support the features offered
by XPath;

– correctness, that is, the ability to correctly implement the features offered
by XPath;

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 129–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 Massimo Franceschet

– efficiency, that is, the ability to efficiently process XPath queries;
– data scalability, that is, the ability to efficiently process XPath queries on

documents of increasing sizes.

Since XPath is the core retrieval language for XSLT [5], XPointer [6] and
XQuery [2], we think that the proposed benchmark can help vendors, develop-
ers, and users to evaluate these targets on XML engines implementing these
technologies.

Our contribution is as follows. In Section 2 we describe the proposed XPath
benchmark. In Section 3, we suggest how to evaluate the XPath benchmark on a
given XML engine and, by way of example, we evaluate, using XPathMark, two
popular XML engines, namely Saxon [7] and Galax [8]. Finally, in Section 4, we
outline future work.

2 XPathMark: An XPath Benchmark
for the XMark Generated Data

XPathMark has been designed in XML and is available at the XPathMark web-
site [4]. In this section we describe a selection of the benchmark queries.

We first motivate our choice of developing the benchmark as XML data. This
solution has all the advantages of XML [9]. In particular:

– the benchmark can be easily read, shipped, and modified;
– the benchmark can be queried with any XML query language;
– it is easier to write a benchmark checker, that is an application that auto-

matically checks the benchmark against a given XML engine, that computes
performance indexes, and that shapes the performance outcomes in different
formats (plain text, XML, HTML, Gnuplot).

Figure 1 contains the Document Type Definition (DTD) for the XML docu-
ment containing the benchmark. The root element is named benchmark and has
the attributes targets (the targets of the benchmark, for instance, functional
completeness), language (the language for which the benchmark has been writ-
ten, for instance XPath 1.0), and authors (the authors of the benchmark). The
benchmark element is composed of a sequence of document elements followed
by a sequence of query elements. Each document element is identified by an
attribute called id of type ID and contains, enclosed into a Character Data
(CDATA) section, a possible target XML document for the benchmark queries.
Each query element is identified by an attribute called id of type ID and has
an attribute called against of type IDREF that refers to the document against
which the query must be evaluated. Moreover, each query element contains the
following child elements:

– type, containing the category of the query;
– description, containing a description of the query in English;
– syntax, containing the query formula in the benchmark language syntax;

XPathMark: An XPath Benchmark for the XMark Generated Data 131

<!ELEMENT benchmark (document*,query*)>

<!ELEMENT document (#PCDATA)>

<!ELEMENT query (type,description,syntax,answer)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT syntax (#PCDATA)>

<!ELEMENT answer (#PCDATA)>

<!ATTLIST benchmark targets CDATA #REQUIRED

language CDATA #REQUIRED

authors CDATA #REQUIRED>

<!ATTLIST document id ID #REQUIRED>

<!ATTLIST query id ID #REQUIRED

against IDREF #REQUIRED>

Fig. 1. The benchmark DTD

– answer, containing the result of the evaluation of the query against the
pointed document, enclosed within a CDATA section. The result is always
a sequence of XML elements with no separator between two consecutive
elements (not even a whitespace).

We have included in the benchmark two target documents. The first doc-
ument corresponds to the XMark document generated with a scaling factor of
0.0005. A document type definition is included in this document. The set of
queries that have been evaluated on this document are divided into the follow-
ing 5 categories: axes, node tests, Boolean operators, references, and functions.
In the following, for each category, we give a selection of the corresponding
benchmark queries (see [4] for the whole query set). See [1] for the XMark DTD.

Axes. These queries focus on the navigational features of XPath, that is on the
different kinds of axes that may be exploited to browse the XML document tree.
In particular, we have the following sub-categories.

Child Axis. One short query (Q1) with a possibly large answer set, and a
deeper one (Q2) with a smaller result. Only the child axis is exploited in both
the queries.

Q1 All the items

/site/regions/*/item

Q2 The keywords in annotations of closed auctions

/site/closed auctions/closed auction/annotation/
description/parlist/listitem/text/keyword

Descendant Axes. The tag keywordmay be arbitrarily nested in the document
tree and hence the following queries can not be rewritten in terms of child axis.
Notice that listitem elements may be nested in the document. During the

132 Massimo Franceschet

processing of query Q4 an XPath processor should avoid to search the same
subtree twice.

Q3 All the keywords

//keyword

Q4 The keywords in a paragraph item

/descendant-or-self::listitem/descendant-or-self::keyword

Parent Axis. Elements named item are children of the world region they belong
to. Since XPath does not allow disjunction at axis step level, one way to retrieve
all the items belonging to either North or South America is to combine the
parent axis with disjunction at filter level (another solution is query Q22 that
uses disjunction at the query level).

Q5 The (either North or South) American items

/site/regions/*/item[parent::namerica or parent::samerica]

Ancestor Axes. Elements named keyword may be arbitrarily deep in the doc-
ument tree hence the ancestor operator in the following queries may have to
ascend the tree of an arbitrarily number of levels.

Q6 The paragraph items containing a keyword

//keyword/ancestor::listitem

Q7 The mails containing a keyword

//keyword/ancestor-or-self::mail

Sibling Axes. Children named bidder of a given open auction are siblings,
and the XPath sibling axes may be exploited to explore them. As for query Q4
above, during the processing of query Q9, the XPath processor should take care
to visit each bidder only once.

Q8 The open auctions in which a certain person issued a bid before another
person

/site/open auctions/open auction[bidder[personref/@person=
’person0’]/following-sibling::bidder[personref/@person=’person1’]]

Q9 The past bidders of a given open auction

/site/open auctions/open auction[@id=’open auction0’]
/bidder/preceding-sibling::bidder

Following and Preceding Axes. following and preceding are powerful axes
since they may potentially traverse all the document in document or reverse
document order. In particular, following and preceding generally explore more
than following-sibling and preceding-sibling. Compare query Q8 with

XPathMark: An XPath Benchmark for the XMark Generated Data 133

query Q11: while in Q8 only sibling bidders are searched, in Q11 also bidders of
different auctions are accessed.

Q10 The items that follow, in document order, a given item

/site/regions/*/item[@id=’item0’]/following::item

Q11 The bids issued by a certain person that precedes, in document order, the
last bid in document order of another person

/site/open auctions/open auction/bidder[personref/
@person=’person1’]/preceding::bidder[personref/@person=’person0’]

Node Tests. The queries in this category focus on node tests, which are ways
to filter the result of a query according to the node type of the resulting nodes.

Q18 The children nodes of the root that are comments

/comment()

Q21 The text nodes that are contained in the keywords of the description element
of a given item

/site/regions/*/item[@id=’item0’]/description//keyword/text()

Boolean operators. Queries may be disjuncted with the | operator, while filters
may be arbitrarily combined with conjunction, disjunction, and negation. This
calls for the implementation of intersection, union, and set difference on context
sets. These operations might be expensive if the XPath engine does not maintain
the context sets (document) sorted.

Q22 The (either North or South) American items

/site/regions/namerica/item | /site/regions/samerica/item

Q23 People having an address and either a phone or a homepage

/site/people/person[address and (phone or homepage)]

Q24 People having no homepage

/site/people/person[not(homepage)]

References. References turns the data model of XML documents from trees into
graphs. A reference may potentially point to any node in the document having
an attribute of type ID. Chasing references implies the ability of coping with
arbitrary jumps in the document tree. References are crucial to avoid redundancy
in the XML database and to implement joins in the query language. In summary,
references provide data and query flexibility and they pose new challenges to the
query processors.

Reference chasing is implemented in XPath with the function id() and may
be static, like in query Q25, or dynamic, like in queries Q26-Q29. The id()
function may be nested (like in query Q27) and its result may be filtered (like

134 Massimo Franceschet

in query Q28). The id() function may also be used inside filters (like in query
Q29).

Q25 The name of a given person

id(’person0’)/name

Q26 The open auctions that a given person is watching

id(/site/people/person[@id=’person1’]/watches/watch/@open auction)

Q27 The sellers of the open auctions that a given person is watching

id(id(/site/people/person[@id=’person1’]
/watches/watch/@open auction)/seller/@person)

Q28 The American items bought by a given person

id(/site/closed auctions/closed auction[buyer/@person=’person4’]
/itemref/@item)[parent::namerica or parent::samerica]

Q29 The items sold by Alassane Hogan

id(/site/closed auctions/closed auction
[id(seller/@person)/name=’Alassane Hogan’]/itemref/@item)

Functions. XPath defines many built-in functions for use in XPath expressions.
The following queries focus on some of those.

Q30 The initial and last bidder of all open auctions

/site/open auctions/open auction
/bidder[position()=1 and position()=last()]

Q31 The open auctions having more than 5 bidders

/site/open auctions/open auction[count(bidder)>5]

Q36 The items whose description contains the word ‘gold’

/site/regions/*/item[contains(description,’gold’)]

Q39 Mails sent in September

/site/regions/*/item/mailbox/mail
[substring-before(substring-after(date,’/’),’/’)=’09’]

Q44 Open auctions with a total increase greater or equal to 70

/site/open auctions/open auction[floor(sum(bidder/increase))>=70]

XMark documents do not contain any comment or processing instruction. More-
over, they do no declare namespaces and language attributes. Although we have
used these features in the first part of the benchmark, the corresponding queries
do not give interesting insights when evaluated on XMark documents, since their
answer sets are trivial. Therefore, we included in the benchmark a second docu-
ment and a different set of queries in order to test these features only. For space

XPathMark: An XPath Benchmark for the XMark Generated Data 135

reasons, we do not describe this part of the benchmark here and we invite the
interested reader to consult the XPathMark website [4].

3 Evaluation of XML Engines

In this section we suggest how to evaluate XPathMark on a given XML engine.
Moreover, by way of example, we evaluate, using XPathMark, two popular XML
engines, namely Saxon [7] and Galax [8].

3.1 Evaluation Methodology

XPathMark can be checked on a set of XML processors and conclusions about
the performances of the processors can be drawn. In this section, we suggest a
method to do this evaluation.

We describe a set of performance indexes that might help the evaluation
and the comparison of different XML processors that have been checked with
XPathMark. We say that a query is supported by an engine if the engine pro-
cesses the query without giving an error. A supported query is correct with
respect to an engine if it returns the correct answer for the query. We define the
completeness index as the number of supported queries divided by the number
of benchmark queries, and the correctness index as the number of supported and
correct queries divided by the number of supported queries. The completeness
index gives an indication of how much of the benchmark language (XPath in our
case) is supported by the engine, while the correctness index reveals the portion
of the benchmark language that is correctly implemented by the engine.

XMark offers a document generator that generates XML documents of differ-
ent sizes according to a numeric scaling factor. The document size grows linearly
with respect to the scaling factor. For instance, factor 0.01 corresponds to a doc-
ument of (about) 1,16 MB and factor 0.1 corresponds to a document of (about)
11,6 MB. Given an XMark document and a benchmark query, we can measure
the time that the XML engine takes to evaluate the queries on the document.
The query response time is the time taken by the engine to give the answer for
the query on the document, including parsing of the document, parsing, opti-
mization, and processing of the query, and serialization of the results. It might
be interesting to evaluate the query processing time as well, which is the frac-
tion of the query response time that the engine takes to process the query only,
excluding the parsing of the document and the serialization of the results. We
define the query response speed as the size of the document divided by the query
response time. The measure unit is, for instance, MB/sec.

We may run the query against a documents series of documents of increasing
sizes. In this case, we have a speed sequence for the query. The average query
response speed is the average of the query response speeds over the document
series. Moving from one document (size) to another, the engine may show either
a positive or a negative acceleration in its response speed, or the speed may
remain constant.

136 Massimo Franceschet

The concept of speed acceleration is intimately connected to that of data
scalability. Consider two documents d1 of size s1 and d2 of size s2 in the document
series with s1 < s2, and a query q. Let t1 and t2 be the response times for query
q on documents d1 and d2, respectively. Let v1 = s1/t1 be the speed of q over d1

and v2 = s2/t2 be the speed of q over d2. The data scalability factor for query q
is defined as:

v1

v2
=

t2 · s1

t1 · s2

If the scalability factor is lower than 1, that is v1 < v2, then we have a positive
speed acceleration when moving from document d1 to document d2. In this case,
we say that the scalability is sub-linear. If the scalability factor is higher than
1, that is v1 > v2, then we have a negative speed acceleration when moving
from document d1 to document d2. In this case, we say that the scalability is
super-linear. Finally, if the scalability factor is equal to 1, that is v1 = v2, then
the speed is constant when moving from document d1 to document d2. In this
case, we say that the scalability is linear. A sub-linear scalability means that the
response time grows less than linearly, while a super-linear scalability means that
the response time grows more than linearly. A linear scalability indicates that
the response time grows linearly. For instance, if s2 = 2 · s1 and t2 = 4 · t1, then
the scalability factor is 2 and the time grows quadratically on the considered
segment.

Once again, we may run query q against series of documents of increasing
sizes and generate a data scalability sequence for query q. The average data
scalability factor for query q is the average of the data scalability factors for
query q over the document series.

All these indexes can be computed for a single query or for an arbitrary subset
of the benchmark. Of particular interest is the case when the whole benchmark
is considered. Given a document d, we define the average benchmark response
time for d as the average of the response times of all the benchmark queries on
document d. Moreover, the benchmark response speed for d is defined as the size
of d divided by the average benchmark response time. Notice that the bench-
mark response speed is different from the average of the response speeds for all
the benchmark queries. Finally, the data scalability factor for the benchmark is
defined as above in terms of the benchmark response speed. If we take the aver-
age of the benchmark response speed (respectively, data scalability factor for the
benchmark) over a document series we get the average benchmark response speed
(respectively, average data scalability factor for the benchmark). The former in-
dicates how fast the engine processes XPath, while the latter reveals how well
the engine scales-up with respect to XPath when the document size increases.

The outcomes of the evaluation for a specific XML engine should be formatted
in XML. In Figure 2 we suggest a DTD for this purpose. The document root
is named benchmark. The engine under evaluation and its version are specified
as attributes of the element benchmark. The benchmark element has an index
child and zero or more query children.

The index element contains the performance indexes of the engine and has
attributes describing the testing environment. The testing environment contains

XPathMark: An XPath Benchmark for the XMark Generated Data 137

<!ELEMENT benchmark (indexes,query*)>

<!ELEMENT indexes (completeness,correctness,times?,speeds?,

scalas?,avgspeed?,avgscala?)>

<!ELEMENT completeness (#PCDATA)>

<!ELEMENT correctness (#PCDATA)>

<!ELEMENT times (time+)>

<!ELEMENT speeds (speed+)>

<!ELEMENT scalas (scala+)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT speed (#PCDATA)>

<!ELEMENT scala (#PCDATA)>

<!ELEMENT avgspeed (#PCDATA)>

<!ELEMENT avgscala (#PCDATA)>

<!ELEMENT query (type,description,syntax,supported,error?,

correct,given_answer?,expected_answer?,

times?,speeds?,scalas?,avgspeed?,avgscala?)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT syntax (#PCDATA)>

<!ELEMENT supported EMPTY>

<!ELEMENT error (#PCDATA)>

<!ELEMENT correct EMPTY>

<!ELEMENT given_answer (#PCDATA)>

<!ELEMENT expected_answer (#PCDATA)>

<!ATTLIST benchmark engine CDATA #REQUIRED

version CDATA #REQUIRED>

<!ATTLIST query id ID #REQUIRED>

<!ATTLIST indexes cpu CDATA #IMPLIED

memory CDATA #IMPLIED

os CDATA #IMPLIED

time_unit (msec | csec | dsec | sec) #IMPLIED

time_type (response | processing) #IMPLIED>

<!ATTLIST supported value (yes | no) #REQUIRED>

<!ATTLIST correct value (yes | no | undef) #REQUIRED>

<!ATTLIST time factor CDATA #REQUIRED>

<!ATTLIST speed factor CDATA #REQUIRED>

<!ATTLIST scala factor1 CDATA #REQUIRED

factor2 CDATA #REQUIRED>

Fig. 2. The DTD for a benchmark outcome

information about the processor (cpu), the main memory (memory), the op-
erating system (os), the time unit (time unit), and the time type, that is,
either response or processing time (time type). The performance indexes are:
the completeness index (completeness), the correctness index (correctness),
a sequence of average benchmark response times for a document series (times,

138 Massimo Franceschet

a sequence of time elements), a sequence of benchmark response speeds for a
document series (speeds, a sequence of speed elements), a sequence of data
scalability factors for the benchmark for a document series (scalas, a sequence
of scala elements), the average benchmark response speed (avgspeed), and the
average data scalability factor for the benchmark (avgscala). Each element of
type time and speed has an attribute called factor indicating the factor of
the XMark document on which it has been computed. Moreover, each element
of type scala has two attributes called factor1 and factor2 indicating the
factors of the two XMark documents on which it has been computed.

Each query element contains information about the single query and is iden-
tified by an attribute called id of type ID. In particular, it includes the category
of the query (type), a description in English (description), the XPath syntax
(syntax), whether or not the query is supported by the benchmarked engine
(supported, it must be either yes or no), the possible error message (error,
only if the query is not supported), whether or not the query is correctly im-
plemented by the benchmarked engine (correct, it must be either yes, no, or
undef. The latter is used whenever the query is not supported), the given and
expected query answers (given answer and expected answer. They are used
for comparison only if the query is not correct), a sequence of query response
times for a document series (times, as above), a sequence of query response
speeds for a document series (speeds, as above), a sequence of data scalability
factors for the query for a document series (scalas, as above), the average query
response speed (avgspeed), and the average data scalability factor for the query
(avgscala).

The solution of composing the results in XML format has a number of ad-
vantages. First, the outcomes are easier to extend with different evaluation pa-
rameters. More importantly, the outcomes can be queried to extract relevant
information and to compute performance indexes. For instance, the following
XPath query retrieves the benchmark queries that are supported but not cor-
rectly implemented:

/benchmark/query[supported="yes" and correct="no"]/syntax

Moreover, the following XQuery computes the completeness and correctness
indexes:

let $x := doc("outcome_engine.xml")/benchmark/query
let $y := $x[supported="yes"]
let $z := $x[correct="yes"]
return <indexes>

<completeness> {count($y) div count($x)} </completeness>
<correctness> {count($z) div count($y)} </correctness>

</indexes>

Finally, the following XQuery computes the average query response time of
queries over the axes category when evaluated on the XMark document with
scaling factor 0.1:

XPathMark: An XPath Benchmark for the XMark Generated Data 139

let $x := doc("outcome_engine.xml")/
benchmark/query[type="axes" and correct="yes"]

let $y := sum($x/times/time[@factor="0.1"])
let $z := count($x)
return <average_time> {$y div $z} </average_time>

More generally, one can easily program a benchmark checker that automati-
cally tests and evaluates different XML engines with respect to XPathMark.

3.2 Evaluating Saxon and Galax

We ran the XPathMark benchmark on two state-of-the-art XML engines, namely
Saxon [7] and Galax [8]. Saxon technology is available in two versions: the basic
edition Saxon-B, available as an open-source product, and the schema-aware
edition Saxon-SA available on a commercial license. We tested Saxon-B 8.4,
with Java 2 Platform, Standard Edition 5.0. Galax is the most popular native
XQuery engine available in open-source and it is considered a reference system
in the database community for its completeness and adherence to the standards.
We tested version 0.5. We ran all the tests on a 3.20 GHz Intel Pentium 4 with
2GB of main memory under Linux version 2.6.9-1.667 (Red Hat 3.4.2-6.fc3). All
the times are response CPU times in seconds. For each engine, we ran all the
supported queries on XMark documents of increasing sizes. The document series
is the following (XMark factors):

(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1)

corresponding to the following sizes (in MB):

(0.116, 0.212, 0.468, 0.909, 1.891, 3.751, 7.303, 15.044, 29.887, 59.489, 116.517)

It is worth noticing that in the computation of the completeness index we did not
consider queries using the namespace axis, since this axis is no more supported
in XQuery [2].

The whole evaluation outcomes can be accessed from the XPathMark web-
site [4]. This includes the outcomes in XML for both the engines and some plots
illustrating the behaviour of the performance indexes we have defined in this
paper. In order to compare efficiency and scalability of the two engines, we also
evaluated the subset of the benchmark corresponding to the intersection of the
query sets supported by the two engines (which are different). This common
base is the query set {Q1-Q9,Q12,Q13,Q15-Q24,Q30-Q47} of cardinality 39. In
the following we report about our findings.

1. Completeness and Correctness. The completeness and the correctness
indexes for Saxon are both 1, meaning that Saxon supports all the queries
in the benchmark (excluding queries using the namespace axis, which are
not counted) and all supported queries give the correct answer. The com-
pleteness index for Galax is 0.85. In particular, the axes following and
preceding (which are in fact optional in XQuery) and the id() function

140 Massimo Franceschet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

po
ns

e
tim

e
(s

ec
)

Size of XML (MB)

Galax
Saxon

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
(s

ec
)

Size of XML (MB)

Galax
Saxon

Fig. 3. Average benchmark response times

are not supported by Galax. However, all the supported queries give correct
answers, hence the correctness index for Galax is 1.

2. Efficiency. On the common query set, the average benchmark response
speed for Saxon is 2.80 MB/sec and that for Galax is 2.50 MB/sec. This
indicates that Saxon is faster than Galax to process the (checked subset of
the) benchmark. The average response time for a query in the benchmark,
varying the document size, is depicted in Figure 3 (left side is from factor
0.001 to factor 0.032 and right side is from factor 0.032 to factor 1). Inter-
estingly enough, Galax outperforms Saxon in the first track, corresponding
to small documents (up to 3.7 MB), but Saxon catches up in the second
track, corresponding to bigger documents. This trend is confirmed by the
behaviour of the benchmark response speeds (see Figure 4 corresponding to
the same segments of the document series).

3. Scalability. On the common query set, the average data scalability factor
for the checked benchmark is 0.80 in the case of Saxon and it is 0.98 in the
case of Galax. This indicates that Saxon scalas-up better than Galax as the
size of the XML document increases. Figure 5 compares the data scalability
factors for the two engines. Notice that Saxon’s scalability is sub-linear up to
XMark factor 0.256 (29.9 MB), and it is super-linear for bigger files. Galax’s
scalability is sub-linear up to XMark factor 0.032 (3.7 MB), and it is super-
linear for bigger documents. This trend is confirmed by the behaviour of the
benchmark response speeds (Figure 4). In particular, notice that Saxon’s
response speed increases (with a decreasing derivative) up to XMark factor
0.256, and then it decreases, while Galax has a positive acceleration up to
XMark factor 0.032, and then the acceleration becomes negative. From this
analysis, we conclude that, under our testing environment, Saxon is well
performing up to a break point corresponding to an XML documents of size
29.9 MB, while the break point for Galax corresponds to a smaller file of 3.7
MB.

Finally, Figures 6 and 7 depict, for each query, the average response speeds
and the average data scalability factors over the document series. Interestingly,
the qualitative behaviour of the response speeds is the same for both the engines,

XPathMark: An XPath Benchmark for the XMark Generated Data 141

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

po
ns

e
sp

ee
d

(M
B

/s
ec

)

Size of XML (MB)

Galax
Saxon

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 20 40 60 80 100 120

R
es

po
ns

e
sp

ee
d

(M
B

/s
ec

)

Size of XML (MB)

Galax
Saxon

Fig. 4. Benchmark response speeds

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8 9 10

D
at

a
sc

al
ab

ili
ty

 fa
ct

or

Pair of consecutive XML documents

Galax
Saxon

Linear scalability

Fig. 5. Data scalability factors for the benchmark

with Saxon outperforming Galax in all the queries but Q35 (The elements written
in Italian language: //*[lang(’it’)]). This might indicate that the two engines
implement a similar algorithm to evaluate XPath queries. The data scalability
factor for Galax is almost constant for all the queries, and it is less but close
to linear scalability. The data scalability factor for Saxon is less stable. It is far
below linear scalability for all the queries but the problematic Q35. In particular,
the scalability factor for Q35 is higher than 3 in the last segment of the document
series, indicating that the response time for Q35 grows more then quadratically
(probably Saxon doesn’t understand Italian very well!). Notice that Q35 is not
problematic in Galax.

4 Future Work

We intend to improve XPathMark in different directions by: (i) enlarging the
benchmark query set. In particular, we are developing a benchmark to test query
scalability, that is the ability of an XML engine to process queries of increas-

142 Massimo Franceschet

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Q47Q46Q45Q44Q43Q42Q41Q40Q39Q38Q37Q36Q35Q34Q33Q32Q31Q30Q24Q23Q22Q21Q20Q19Q18Q17Q16Q15Q13Q12Q9Q8Q7Q6Q5Q4Q3Q2Q1

R
es

po
ns

e
sp

ee
d

(M
B

/s
ec

)

Query

Galax
Saxon

Fig. 6. Average query response speeds

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Q47Q46Q45Q44Q43Q42Q41Q40Q39Q38Q37Q36Q35Q34Q33Q32Q31Q30Q24Q23Q22Q21Q20Q19Q18Q17Q16Q15Q13Q12Q9Q8Q7Q6Q5Q4Q3Q2Q1

D
at

a
sc

al
ab

ili
ty

 fa
ct

or

Query

Galax
Saxon

Linear scalability

Fig. 7. Average data scalability factors for queries

ing lengths; (ii) studying different performance indexes to better evaluate and
compare XML engines; (iii) implementing a benchmark checker in order to au-
tomatically compare the performance of different query processors with respect
to XPathMark.

XPathMark can also be regarded as a benchmark for testing the navigational
fragment of the XQuery language in isolation. Indeed, XQuery crucially uses
XPath to navigate XML trees, saving the retrieved node sequences into variables
that may be further elaborated by, e.g., joining, sorting, and filtering. In this
respect, XPathMark can be considered as a fragment of a new version of the
XMark benchmark or as a part of a bigger benchmark evaluation project for
XQuery (e.g., the micro-benchmark repository for XQuery proposed in [10]).

References

1. Schmidt, A.R., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: A Benchmark for XML Data Management. In: Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB). (2002) 974–985
http://monetdb.cwi.nl/xml/.

XPathMark: An XPath Benchmark for the XMark Generated Data 143

2. World Wide Web Consortium: XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery (2005)

3. World Wide Web Consortium: XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath (1999)

4. M. Franceschet: XPathMark: An XPath benchmark for XMark.
http://www.science.uva.nl/∼francesc/xpathmark (2005)

5. World Wide Web Consortium: XSL Transformations (XSLT).
http://www.w3.org/TR/xslt (1999)

6. World Wide Web Consortium: XML Pointer Language (XPointer).
http://www.w3.org/TR/xptr (2002)

7. Kay, M.H.: Saxon. An XSLT and XQuery processor.
http://saxon.sourceforge.net (2005)

8. Fernández, M., Siméon, J., Chen, C., Choi, B., Gapeyev, V., Marian, A., Michiels,
P., Onose, N., Petkanics, D., Ré, C., Stark, M., Sur, G., Vyas, A., Wadler, P.:
Galax. The XQuery implementation for discriminating hackers.
http://www.galaxquery.org (2005)

9. Harold, E.R., Means, W.S.: XML in a Nutshell. 3rd edn. O’Reilly (2004)
10. Afanasiev, L., Manolescu, I., Michiels, P.: MemBeR: a micro-benchmark repository

for XQuery project description. In: Proceedings of the International XML Database
Symposium (XSym). (2005)

MemBeR: A Micro-benchmark Repository
for XQuery

Loredana Afanasiev1,�, Ioana Manolescu2,��, and Philippe Michiels3,���

1 University of Amsterdam, The Netherlands
lafanasi@science.uva.nl

2 INRIA Futurs & LRI, France
ioana.manolescu@inria.fr

3 University of Antwerp, Belgium
philippe.michiels@uia.ua.ac.be

Abstract. XQuery is a feature-rich language with complex semantics.
This makes it hard to come up with a benchmark suite which covers all
performance-critical features of the language, and at the same time allows
one to individually validate XQuery evaluation techniques. This paper
presents MemBeR, a micro-benchmark repository, allowing the evalua-
tion of an XQuery implementation with respect to precise evaluation
techniques. We take the view that a fixed set of queries is probably in-
sufficient to allow testing for various performance aspects, thus, the users
of the repository must be able to add new data sets and/or queries for
specific performance assessment tasks. We present our methodology for
constructing the micro-benchmark repository, and illustrate with some
sample micro-benchmarks.

1 Introduction

The development of XML query engines is currently being held back by a lack
of systematic tools and methodology for evaluating algorithms and optimization
techniques. The essential role of benchmark tools in the development of XML
query engines, or any type of data management systems for that matter, is well
established. Benchmarks allow one to assess a system’s capabilities and help
determine its strengths or potential bottlenecks.

Since the introduction of XML query languages like XPath 1.0 [6], XPath
2.0 [9] and XQuery [3], many benchmark suites have been developed. Most of
them, including XMark [24], XMach-1 [4], X007 [5] and XBench [25], fall into the
category of application benchmarks. Application benchmarks are used to eval-
uate the overall performance of a database system by testing as many query

� Loredana Afanasiev is supported by the Netherlands Organization for Science and
Research (NWO), grant number 017.001.190.

�� Ioana Manolescu is partly supported by the ACIMD Tralala (Transformations,
logics and languages for XML).

��� Philippe Michiels is supported by IWT – Institute for the Encouragement of Inno-
vation by Science and Technology Flanders, grant nr. 31016.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 144–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

MemBeR: A Micro-benchmark Repository for XQuery 145

language features as possible, using only a limited set of queries. The XML data
sets and the queries are typically chosen to reflect a particular user scenario. The
influence of different system components on their overall performance is, how-
ever, difficult to analyze from performance figures collected for complex queries.
The evaluation of such queries routinely combines a few dozen execution and
optimization techniques, which in turn depend on numerous parameters. Never-
theless, due to a lack of better tools, application benchmarks have been used for
tasks they are not suited for, such as the assessment of a particular XML join
or optimization technique.

Micro-benchmarks, as opposed to application benchmarks, test individual
performance-critical features of the language, allowing database researchers to
evaluate their query evaluation technique (e.g. query optimization, storage and
indexing schemes etc.) in isolation. Micro-benchmarks provide better insight
in how XQuery implementations address specific performance problems. They
allow developers to compare performance with and without the technique being
tested, while reducing to a minimum the interaction with other techniques or
implementation issues.

To the authors’ knowledge, the Michigan benchmark [23] is the only existing
micro-benchmark suite for XML. It proposes a large set of queries, allowing
one to assess an engine’s performance for a variety of elementary operations.
These queries are used on a parametrically generated XML data set. However,
this micro-benchmark suffers from some restrictions. For instance, the maximum
document depth is fixed in advance to 16, and there are only two distinct element
names. Furthermore, the query classes identified in [23] are closely connected to
a particular evaluation strategy1. The queries of [23] are very comprehensive on
some aspects, such as downward XPath navigation and ignore others, such as
other XPath axes, or complex element creation.

The Need for Micro-benchmarks and Associated Methodology. The
first problem we are facing is the lack of micro-benchmarks allowing system
designers and researchers to get precise and comprehensive evaluations of XML
query processing systems and prototypes. An evaluation is precise if it allows
one to study language features in isolation, to understand which parameters
impact a system’s behavior on that feature, without “noise” in the experimental
results due to processing other features. The need for precision, which is a general
aspect of scientific experiments, leads to the choice of micro-benchmarks, one for
each feature to study. For an evaluation to be comprehensive, several conditions
must be met. For every interesting feature, there must be a micro-benchmark
allowing to test that feature. When studying a given feature, all parameters
which may impact the system’s behavior in the presence of that feature must
be described, and it must be possible to vary their values in a controlled way.
Finally, all interesting aspects of the system’s behavior during a given measure
must be documented. For instance, a performance micro-benchmark should be

1 Evaluating path expressions by an n-way structural join, where n is the total number
of path steps. The query classification criteria are no longer appropriate e.g., if a
structural index is used.

146 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

accompanied by information regarding the memory or disk consumption of that
measure.

Second, a micro-benchmark user methodology is needed, explaining how to
choose appropriate micro-benchmarks for a given evaluation, why the micro-
benchmark parameters are likely to be important, and how to choose value
combinations for these parameters. Such a methodology will bring many ben-
efits. It will ease the task of assessing a new implementation technique. It will
facilitate comprehension of system behavior, and reduce the time to write down
and disseminate research results. And, it will ease the task of reviewers assessing
“Experiments” sections of XML querying papers, and help unify the authors’
standards with the reviewers’ expectations.
Our Approach: Micro-benchmark Repository and Methodology. We
are currently building a repository of micro-benchmarks for XQuery and its
fragments, which will provide for precise and comprehensive evaluation. We en-
dow micro-benchmarks with precise guidelines, easing their usage and reducing
the risks of mis-use.

Given the wide range of interesting XQuery features, and the presence of
interesting ongoing developments (such as extensions for text search [7], and for
XML updates [8]), a fixed set of micro-benchmarks devised today is unlikely to
be sufficient forever. Thus, we intend to develop our repository as a continuing,
open-ended community effort:

◦ users can contribute to the repository by creating, or enhancing an existing
micro-benchmark;

◦ additions to the repository will be subject to peer review from the other
contributors, checking if the feature targeted by the addition was not already
covered and if the addition adheres to the micro-benchmark principles, and
ensuring the quality of the benchmark’s presentation.

Such a repository will allow consolidating the experience of many individual
researchers having spent time and effort in “carving out” micro-queries from
existing application benchmarks unfit for the task. It will be open to the addi-
tion of new performance challenges, coming from applications and architectures
perhaps not yet available today. This way, the micro-benchmarks will be con-
tinuously improved, and, we hope, widely used in the XML data management
community. The repository is hosted on the Web and freely accessible. This
should further simplify the task of setting up experimental studies, given that
individual micro-benchmarks will be available at specific URLs.

This paper describes our approach. Section 2 formalizes the concepts behind
the micro-benchmarks repository, and Section 4 illustrates them with several
examples. Section 3 outlines a preliminary micro-benchmark classification and
delves into more details of performance-oriented micro-benchmarks. Section 5
describes the test documents in the repository. Section 6 briefly describes the
repository’s Web interface, and concludes with some perspectives.

MemBeR: A Micro-benchmark Repository for XQuery 147

Document

XMLSchema

consistsOf

1..N 0..1

Parameter

Name
Value
Unit

1..N

1..N

1..N0..1

1..N

0..1

1..N 1..N

0..1

1..N

DocGen

Name produces producedBy

QueryGen
Name

Generator
QueryLang.

characterizedBy

characterizedBy resultsFrom
ID

Query

Body

1..N

1..N

1..N

1..1

Measure

ID

Schema

0..1

1..N
characterizedBy

involves

validates

involvesName

1..N

1..1ResultSet
obtainedFor1..1 0..N

characterizedBy 1..N

1..N

Micro−benchmark

Guidelines
ID

Fig. 1. Entity-Relationship diagram of the micro-benchmark repository contents.

2 Our Approach: A Micro-benchmark Repository

Our goal is to build a repository of micro-benchmarks for studying the perfor-
mance, resource consumption, correctness and completeness of XQuery imple-
mentations techniques.
Performance: how well does the system perform, e.g., in terms of completion

time, or query throughput? The primary advantage of a data management
system, when compared with an ad-hoc solution, should be its efficiency.

Resource consumption: performance should be naturally evaluated against the
system’s resource needs, such as the size of a disk-resident XML store, with
or without associated indexes, or the maximum memory needs of a streaming
system.

Completeness: are all relevant language features supported by the system? Some
aspects of XQuery, such as its type system, or its functional character, have
been perceived as complex. Correspondingly, many sub-dialects have been
carved out [16, 20, 22]. Implementations aiming at completeness could use a
yardstick to compare against.

Correctness: does the output of the system comply with the query language
specifications? For a complex query language such as XQuery, and even its
fragments, correctness is also a valid target of benchmarking.

In this paper we will mainly focus on performance and resource consump-
tion micro-benchmarks. Nevertheless, we stress the importance of correctness
for interpreting performance results. In devising correctness and completeness
benchmarks, we expect to draw inspiration from the use cases and examples
used in the W3C XQuery specifications and from existing benchmarks, like [12].

We intend our benchmark repository mainly for system designers, to help
them analyze and optimize their system.
Micro-benchmarking Design Principles. We adopt the following design
principles:

There should be a minimal number of micro-benchmarks for every language
feature, and we will usually strive to keep this number to 1. However, if a new
example provides a very different perspective, and the current ones cannot be
extended to simulate it, then it will be included in the repository.

148 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

A micro-benchmark should explicitly list, and provide value ranges for all
data, query and resource parameters which may impact the results. This is a
crucial condition for benchmark results to be reproducible, interpretable, and
trustworthy. In this way a micro-benchmark will contain well-documented and
thorough measures.

The above implies that for any micro-benchmark measure, and any data
parameter likely to impact the measure’s result, at least one data set can be
constructed by controlling the value of that parameter in its interesting range.
This will have an impact on our choice of data sets (see Section 5).

A micro-benchmark should reduce to a minimum the influence of all but the
tested language feature. Thus, if the purpose is to test path expressions navi-
gating downward, the queries should not use sibling navigation, and vice versa.
An important consequence is the following. The presence of an XML Schema
for the input document enables a large number of optimizations, at the level
of an XML store, XML index, XQuery rewriting and optimization, automata-
based execution etc. In any micro-benchmark measure where the focus is not
on schema-driven optimizations, one should use documents without a schema.
Otherwise, schema-driven optimizations might effect the system’s performance
in a non-transparent manner and make results uninterpretable.

Measure (also) individual query processing steps. To get a precise evaluation,
often is needed to measure individual processing steps, such as: query normal-
ization, query rewriting, query optimization, data access, (structural) join pro-
cessing, output construction etc. For instance, XPath micro-benchmarks may
measure the time to locate the elements which must be returned (this often
means finding their IDs). Measuring such processing steps requires hooks into
the execution engine. We consider it worth the trouble, as even if queries are
chosen with care, query execution times may still reflect the impact of too many
factors.

A micro-benchmark should be extensible. A micro-benchmark should aim to
remain useful even when systems will achieve much higher performance. The pa-
rameters should therefore allow for a wide enough range. The micro-benchmarks
should also be regularly updated to reflect new performance standards.

From these principles, we derive the following micro-benchmark repository struc-
ture (Fig. 1):

◦ XML documents. A document may have an XML Schema or not. It is char-
acterized by a number of parameters, which we model as name-value pairs.
Benchmarks typically benefit from using collections of documents similar in
some aspects, but characterized by different parameters. For synthetic data
sets, a document generator is also provided.

◦ Queries. Each query aims at testing exactly one feature. Queries can also be
characterized by parameters, such as: number of steps in a path expression
query, numbers of query nesting levels, selectivity of a value selection predi-
cate etc. Similar queries make up a query set, for which a query generator is
provided.

MemBeR: A Micro-benchmark Repository for XQuery 149

◦ Measures: a measure is one individual experiment, from which experimental
results is gathered. We model an experimental result also as a parameter,
having a name and a value. A measure may involve a document, or none;
XML fragments are legal XQuery expressions, and thus an XML query may
carry “its own data” (see micro-benchmark μB4 in Section 4). A measure
may involve zero, one, or more queries; the latter case is reserved to multi-
query scenarios, such as, for instance, XML publish/subscribe. Intuitively,
one measure yields “one point on a curve in a graph”. We will provide ex-
amples shortly.

◦ Micro-benchmarks. A micro-benchmark is a collection of measures, studying
a given (performance, consumption, correctness or completeness) aspect of a
XML data management and querying. Intuitively, a micro-benchmark yields
a set of points, which can be presented as “one or several curves or graphs”,
depending on how many parameters vary, in the documents and queries
considered. A micro-benchmark includes guidelines, explaining which data
and/or query parameters may impact the results and why, and suggesting
ranges for these parameters. Measure methodologies may also specify the
scenario(s) for which the measure is proposed, including (but not limited to):
persistent database scenario, streaming query evaluation, publish/subscribe
etc.

◦ Micro-benchmark result sets, contributed by users. A result set consists of
a set of points corresponding to each of the micro-benchmark’s prescribed
measures, and of a set of parameters characterizing the measure enactment.
Commonly used parameters describe hardware and software configurations.
Other important parameters are the technique(s) and optimization(s) em-
ployed. For instance, a result set may specify the particular XML index used,
or the fact that the query automaton was lazily constructed etc.

Micro-benchmark Usage Methodology. Even a carefully designed (micro-)
benchmark can be misused. As an attempt to limit this, we require micro-
benchmark results to adhere to the following usage principles:

Always declare the language and/or dialect supported by the system, even
for features not used by the micro-benchmark. Many efficient evaluation tech-
niques are conditioned by some underlying language simplifications, such as:
unordered semantics, simplified atomic types set, unsupported navigation axes,
unsupported typing mechanism etc. Such simplifications, if any, should be clearly
stated next to performance figures. In relational query processing research, the
precise SQL or Datalog dialect considered is always clearly stated. XQuery not
being simpler than SQL, at least the same level of precision is needed.

Micro-benchmark results which vary less parameters than specified by the
micro-benchmark are only meaningful if they are accompanied by a short ex-
planation as to why the simplifications are justified. Omitting this explanation
ruins the effort spent in identifying useful parameters, and compromises the
comprehensive aspect of the evaluation.

Extra values for a parameter may always be used in results. Range changes or
restrictions should be justified. In some special situations, new parameter values

150 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

may be needed. In such cases, a revision of the micro-benchmark should be
considered.

When presenting micro-benchmark results, parameters should vary one at a
time, while keeping the other parameters constant. This will typically yield a
family of curves where the varying parameter values are on the x axis, and the
measure result on the y axis. For space reasons, some curves may be omitted
from the presentation. In this case, however, the measure points for all end-
of-range parameter values should be provided. Trying the measure with these
values may give the system designer early feedback, by exposing possible system
shortcomings. And, when performance is robust on such values, a convincing
case has been made for the system’s performance.

3 Preliminary Taxonomy of Measures
and Micro-benchmarks

In this section, we outline a general classification of measures (and thus, of
micro-benchmarks). This classification guides a user looking for a specific micro-
benchmark, and serves as a road map for our ongoing micro-benchmark design
work.

A first micro-benchmark classification criterion, introduced in Section 2,
distinguishes between performance, consumption, correctness and completeness
benchmarks.

We furthermore classify micro-benchmarks according to the following other
criteria:

◦ The result metric: it may be execution time, query normalization or opti-
mization time, query throughput, memory occupancy, disk occupancy etc. It
may also be a simple boolean value, in the case of correctness measures.

◦ Benchmarks may test data scalability (fixed query on increasingly larger
documents) or query scalability (increasing-size queries on fixed documents).

◦ Whether or not a micro-benchmark uses an XMLSchema, and the particular
schema used.

◦ The query processing scenarios to which a micro-benchmark applies, such as:
persistent database (store the document once, query it many times), stream-
ing (process the query in a single pass over the document), or programming
language-based (the document is manipulated as an object in some program-
ming language).

◦ The query language and perhaps dialect which must be supported in order
to run the micro-benchmark.

◦ The language feature being tested in a micro-benchmark is a precise classifi-
cation criteria. We strive to provide exactly one micro-benchmark for each
interesting feature.

The next section contains several micro-benchmark examples together with
their classification and methodology.

MemBeR: A Micro-benchmark Repository for XQuery 151

4 Examples of Micro-benchmarks for XPath and XQuery

We start by a very simple micro-benchmark, involving a basic XPath operation.

Example 1 (Micro-benchmark μB1: simple node location). In a persistent XML
database scenario, we are interested in the time needed to locate elements of
a given tag in a stored document. We study this time on increasingly large
and complex documents (data scalability measure). We are not concerned with
schema optimizations, thus, we will use schema-less documents. We measure the
time to locate the elements, not to return their subtrees.

Let Q1 be the query //a1. Let n, t, d and f be some positive integers, and p
be a real number between 0 and 1. Let D1(n, t, d, f, p) be a document whose n
elements are labeled a1, a2, . . ., at, having the depth d, the fan-out (maximum
number of children of an element) f , and such that exactly p ∗ n elements are
labeled a1. Elements may nest freely, that is, the parent of an element labeled
ai can have any aj label, 1 ≤ i, j ≤ t.

The measure M1(h, b) involves Q1 and a document D1(n, t, d, f, p), for some
n, t, d, f ∈ N and p ∈ [0, 1]. The parameter h may take values in {true, false}
and specifies whether the measure is taken with a hot cache (h = true) or with a
cold cache (h = false). The parameter b is the size of the memory buffer in KB.
For any pair of (h, b) values, M1(h, b) results in an execution time for locating the
persistent identifiers of the elements in Q1’s result, in document D1(n, t, d, f, p).
A M1 measure is characterized by a (h, b, n, t, d, f, p) tuple.

The micro-benchmark μB1 consists of applying M1 on a subset of
{true, false} × N × N × N × N × N × [0, 1], such as, for instance:

h ∈ {true, false} b ∈ {50, 200, 1000} n ∈ {106, 109, 1012} d ∈ {10, 20, 50}
f ∈ {2, 10, 20} t ∈ {1, 5, 20} p ∈ {0.001, 0.01, 0.1, 0.5, 0.8, 1.0}

Parameters n and p impact the number of retrieved elements. Parameter
t determines the document’s structural complexity, which may impact perfor-
mance if the evaluation relies on a path or structural index. Together, d and
f determine whether the document is deep or shallow; this may impact perfor-
mance for strategies based on navigation or structural pattern matching. Such
strategies are also affected by n, even when n ∗ p is constant. Varying h and b
allows to capture the impact of the system’s memory cache and memory buffer
size on the evaluation times.

μB1 results in several thousand points, all of which are not needed in all
circumstances. If the system implements M1 by a lookup in a tag index as
in [17], d, f and t may make little difference, thus μB1 may be reduced to only
60 individual measures. As another example, if M1 is implemented by CAML-
based pattern matching as in [2], then all evaluation takes place in memory and
b is irrelevant.

Example 2 (Micro-benchmark μB2: simple node location in the presence of a
schema). Important performance gains can be realized on a query like Q1 if

152 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

schema information is available. μB2 aims at quantifying such gains. Let D2,l(n, t,
f, d, p, Σl) be a document satisfying the same conditions as D1(n, t, f, d, p) from
μB1, but furthermore valid with respect to an XML Schema Σl, specifying that
a1 elements can only occur as children of elements labeled a1, a2, ... al.
Σl prescribes a maximum number of f children for any element, and does not
constrain the structure of D2,l in any other way.

Measure M2(n, t, f, d, p, l) records the running time of query Q1 on D2,l(n, t,
f, d, p, Σl). We choose not to include h and b here, since μB2 is only concerned
with the impact of the schema, orthogonal to cache and buffer concerns.

The micro-benchmark μB2 consists of running M2 for some fixed n, t, f , d
and p, and for all l = 1, 2, . . . , t. A set of suggested values is: n = 106, t = 15,
f = 10, d = 10, p = 1/t.

An efficient system would use Σl to narrow the search scope for a1 elements.
This can take many forms. A fragmented storage, or a structural index, may
make a distinction between elements a1, . . ., al and the others, making it easier
to locate a1s. A streaming processor may skip over subtrees rooted in a(l + 1),
. . ., at elements etc.

Example 3 (Micro-benchmark μB3: returning subtrees, no schema). This micro-
benchmark is meant for the persistent database scenario. It captures the per-
formance of sending to the output sub-trees from the original document. This
operation, also known as serialization, or reconstruction, is challenging in many
respects: systems whose storage is fragmented (e.g. over several relational tables)
will have to make an effort to reconstruct the input; systems using a persistent
tree will have to follow disk-based pointers, thus they depend on the quality of
node clustering etc.

We aim at measuring the cost of reconstruction alone, not the cumulated
cost of locating some nodes and then reconstructing them. Thus, we choose the
query Q2: /*, and will apply it on the root of some input document.

Document depth, fan-out, and size, all impact reconstruction performance.
Furthermore, document leaves (in a schema-less context, interpreted as strings)
also may have an impact. Some storage models separate all strings from their
parents, others inline them, others inline only short strings and separate longer
ones etc.

We vary string size according to a normal distribution ssd(sa, sv), of average
sa and variance sv. We vary the number of text children of a node according
to another (normal) distribution tcd(ca, cv) of average ca and variance cv. Let
D3(n, t, d, f, tcd, ssd) be an XML document having n elements labeled a1, a2,
. . . at, of depth d and fanout f , such that the number of text children of given
element is obtained from tcd, and the number of characters in each individual
text child is given by ssd. As in D1, elements nest arbitrarily. The actual string
content does not matter, and is made of randomly chosen characters.

Measure M3(n, t, d, f, sa, sv, ca, cv) consists of measuring the execution time
of Q2 on D3(n, t, d, f, tcd(ca, cv), ssd(sa, sv)). Micro-benchmark μB3 consists of
M3 measures for:

MemBeR: A Micro-benchmark Repository for XQuery 153

for $x1 in document("d1.xml")/root/a1,
 $x2 in document("d2.xml")/root/a2,
 ...
 $xn in document("dn.xml")/root/an
return <out>
 {$x1} {$x2} ... {$xw}
 <out> {$x(w+1)} {$x(w+2)} ...
 <out> {$x(2w+1)} {$x(2w+2)} ... {$x(3w)}
 <out> ...
 ...
 </out>
 </out>
 </out>
 </out>

Q 4
n,h,w

4
1

1 1D (4,4,2,tcd ,ssd)

a1 a1a1
a1

a1 a1a1
a1

a1 a1a1
a1

a1 a1a1
a1

root

a(2w)

a(hw−w+1)

2
4 22D (3,5,3,tcd ,ssd)

root

a2 a2

a2a2

a2

a2 a2

a2a2

a2

a2a2

a2

a2a2

w

h

out

a(w+1)a(w+2)

a1 a2 ... aw out

a(hw−w+2) a(hw)...

...

out

...
out

Fig. 2. Documents and queries involved in the micro-benchmark μB5.

n ∈ {103, 106, 109} t ∈ {2, 20} d ∈ {5, 20, 50} f ∈ {5, 10}
(ca, cv) ∈ {(2, 1), (5, 2), (10, 5)} (sa, sv) ∈ {(5, 2), (100, 50), (1000, 500)}

Example 4 (Micro-benchmark μB4: XPath duplicate elimination). This micro-
benchmark is taken from [15]. The purpose is to assess the processor’s perfor-
mance in the presence of potential duplicates. Let Qi

3 be the query:
<a>/b/parent::a/b/parent::a . . . /b/parent::a

where the sequence of steps /b/parent::a is repeated i times. Any Qi
3 returns

exactly one a element. An evaluation following directly the XPath [9] speci-
fication requires eliminating duplicates after every path step, which may hurt
performance. Alternatively, duplicates may be eliminated only once, after evalu-
ating all path expression steps. However, in the case of Qi, this entails building
intermediary results of increasing size: 2 after evaluating /b/parent::a, 22 after
evaluating /b/parent::a/b/parent::a etc., up to 2i before the final duplicate
elimination. Large intermediary results may eat up available memory and hurt
performance.

M4(i) measures the running time of Qi
3; it does not need a document. The

micro-benchmark μB4 consists of the measures M4(i), for i ∈ {1, 5, 10, 20}.

Example 5 (Micro-benchmark μB5: element creation). This micro-benchmark
targets the performance of new element construction, an important feature in
XQuery.

The size, depth, and fanout of the copied input subtrees, as well as the
text nodes therein, clearly impact performance. Another important factor is the
complexity of the constructed XML output. Thus, we consider a set of documents
Di

4(fri, ni, di, tcdi, ssdi), as follows:
◦ Di

4’s root element is labeled root. All other elements in Di
4 are labeled ai.

◦ The root of any Di
4 document has exactly fri children elements.

154 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

◦ Any sub-tree rooted in an ai child of the root is a tree of depth di consisting
of ni elements.

◦ Root elements do not have text children. The number, and size, of text
children of ai elements is dictated by the text child distribution tcdi and
the text length distribution ssdi. These are normal distributions, as in the
micro-benchmark μB3 previously described.

For instance, D1
4(4, 4, 2, tcd1, ssd1) and D2

4(3, 5, 3, tcd2, ssd2) are outlined in the
upper part of Fig. 2, for some unspecified distributions. Text nodes are omitted
for readability.

To vary the complexity of result construction, we consider a family of queries
Qn,h,w

4 , where: n is the number of input documents from which subtrees are
extracted, h is the “stacking height” of such sub-trees in the output, and w is
the “stitching width” of the sub-trees in the output, where h ∗ w must be at
most n. This is better understood by looking at Qn,h,w

4 , pictured in the lower
part of Fig. 2, together with the outline of an element it produces. The shaded
triangular shapes represent (deep copies of) the subtrees rooted in the ai input
elements. This query uses very simple navigation paths in the for clause, in
order to minimize the noise introduced in the measure by the effort spent in
locating these subtrees. Two sample instances of Qn,h,w

4 are shown in Fig. 3.
Measure M5 records the execution time of query Qn,h,w

4 for some n, h and w
values, on n input documents D1

4, D2
4 , . . ., Dn

4 . M5 is characterized by numerous
input parameters, including those describing each Di

4.
Choosing the recommended parameters ranges for μB5 without blowing up

the number of measures is quite delicate. Without loss of generality, we restrict
ourselves to the distributions:
◦ tcdlow with average 2 and variance 1, ssdlow with average 10 and variance

5; these correspond to a mostly data-centric document.
◦ tcdhigh with average 10 and variance 2, ssdhigh with average 1000 and vari-

ance 200; these correspond to a text-rich document.
To measure scale up with w, the following set of parameter ranges are rec-

ommended:

n ∈ {1, 2, 5, 10, 20} w = n h = 1

fr1 = 105, choose a combination of fr2, . . ., frn values such that Πn
i=1fri = 108

For any n and i ∈ {1, . . . , n}, (tcdi, ssdi) = (tcdhigh, ssdhigh), di = 5, and ni = 100

In the above, the values of related parameters, such as fri, are part of the
micro-benchmark specification. To measure scale up with h, set w = 1, h = n,
and proceed as above.

To measure scale up with the output size, set n = 12, w = 4, h = 3, set all
distributions, first, to (tcdhigh, ssdhigh) and second, to (tcdlow, ssdlow), choose
some fri such that Πn

i=1fri = 106, and let each ni take values in {1, 10, 25}. An
output tree will thus contain between 12+3 = 15 and 12∗25+3 = 303 elements.

All these five micro-benchmarks are performance-oriented. μB1 and μB2

measure node location time, while μB3, μB4 and μB5 measure query execution

MemBeR: A Micro-benchmark Repository for XQuery 155

Q3,1,3
4 Q3,3,1

4

for $x1 in document(‘‘d1.xml’’)/root/a1
$x2 in document(‘‘d2.xml’’)/root/a2
$x3 in document(‘‘d3.xml’’)/root/a3

return <out>
{$x1} {$x2} {$x3}
</out>

for $x1 in document(‘‘d1.xml’’)/root/a1
$x2 in document(‘‘d2.xml’’)/root/a2
$x3 in document(‘‘d3.xml’’)/root/a3

return <out>
{$x1} <out>

{$x2} <out> {$x3} </out>
</out>

</out>

Fig. 3. Sample queries from the micro-benchmark μB5.

Table 1. XPath performance micro-benchmarks (not an exhaustive list).

μB5 (dq) Simple linear path expressions of the form /a1/a2/. . ./ak.
μB6 (dq) Path expressions of the form //a1//a2//. . ./ak.
μB7 (dq) Path expressions of the form /a1/*/*/. . ./a2, where the number of * varies.
μB8 (d) For each XPath axis [9], one path expression including a step on that axis.

Interestingly, some node labeling schemes such as ORDPATH [21] allow
“navigating” along several axes, such as parent, but also child, preceding-
sibling etc. directly on the element label.

μB9 (dq) Path expressions with a selection predicate, of the form
/a1/a2/. . ./ak[text()=c], where c is some constant.

μB10 (dq) Path expressions with inequality comparisons.
μB11 (d) Path expressions with positional predicates of the form /a1[n],

where n ∈ N.
μB12 (d) Path expressions with positional predicates, such as

/a1[position()=last()].
μB13 (dq) Path expressions with increasingly many branches, of the form

//a1[p1]//. . .//ak[pk], where each pi is a simple path expression.
μB14 (dq) Path expressions involving several positional predicates, of the form

//a1[n1]//. . .//ak[nk], where each ni ∈ N.
μB15 (d) Aggregates such as count, sum etc. over the result of path expressions.

time. μB1, μB2, μB3 and μB4 require downward XPath, while μB4 requires
XQuery node creation. Only μB3 uses a schema. μB1, μB2 and μB3 test data
scalability; μB4 tests query scalability.

In Table 1 and Table 2 we outline some other interesting XPath and XQuery
performance-oriented micro-benchmarks; the list is clearly not exhaustive. We
mark by (d) and (q) micro-benchmarks where data scalability (respectively query
scalability) should be tested.

Other XQuery micro-benchmarks should target feature such as: explicit sort-
ing; recursive functions; atomic value type conversions implied by comparison
predicates; explicit type conversion to and from complex types; repeated sub-
expressions etc. Two ongoing XQuery extension directions will require specific
micro-benchmarks: full-text search [7], and updates [8].

5 Data Sets for the Micro-benchmark Repository

Precise performance evaluation requires carefully characterizing the test docu-
ments. Some document characteristics were already considered in [23, 24]:

156 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

Qk
5

for $x1 in document(‘‘doc.xml’’)//a1
$x2 in $x1//a2
. . .
$xk in $x1//ak

return {$x1, $x2, . . . $xk}

Qk
6

for $x in document(‘‘doc.xml’’)//a1
return <res>

{$x//a1} {$x//a2} . . . {$x//ak}
</res>

Qk
7

for $x1 in document(‘‘doc.xml’’)//a1
$x2 in document(‘‘doc.xml’’)//a2

where $x1/text() θ $x2/text()
return {$x1, $x2}

Fig. 4. Queries involved in the micro-benchmark μB16, μB17 and μB18.

Table 2. XQuery performance micro-benchmarks (not an exhaustive list).

μB16 (dq) The time needed to locate the elements to which are bound the for

variables of a query. These variables can be seen as organized in a tree pattern of varying
width and depth. For instance, width k and depth 2 yield the simple query Qk

5 (Fig. 4).
This task is different from similar XPath queries, such as //a1[//a2]. . .[//ak], or
//a1[//a2]. . .[//a(i−1)][//a(i+1)]. . .[//ak]//ai, since unlike these XPath queries,
all tuples of bindings for Qk

5 variables must be retained in the result.

μB17 (dq) measures the time to locate the roots of the sub-trees to be copied in the
output of query Qk

6 , shown in Fig. 4. Qk
6 will return some a1 elements lacking some

ai, while Qk
5 discards them. Thus, an evaluation technique using frequency estimations

of ai elements to reduce intermediary results will improve performance for Qk
5 , and it

would not affect Qk
6 .

μB18 (d) measures the time needed to: locate the elements corresponding to $x1 and
$x2 in the query Qk

7 , shown in Fig. 4, as well as its total evaluation time. In the query,
θ stands for a comparison operator such as =, <, ≤ etc. When θ is =, separate micro-
benchmarks should address: (i) the schema-less case, with the exact query above; then,
replacing the condition with $x/@y1=$x2/@y2, (ii) the schema-less case, and (iii) the
case when an XML schema specifies that the y1 and y2 attributes are in a key-foreign
key relationship.
The time to locate the elements will show whether an efficient technique such as an
index-based join is used to retrieve e.g. only those $x2 elements with matching $x1

elements. Measuring the total query evaluation time, especially for non-equality joins,
exposes the join’s performance, and how it interacts with serialization: If a $x1 sub-tree
must appear n times in the result, is it fully copied n times, or are some operations
factorized ? The results of the micro-benchmarks based on Qk

7 should also be interpreted
in conjunction with the results of μB5 described in the previous section.

◦ Document size is the most obvious parameter for data scalability measures.
It is also one of the most mis-used. For instance, some studies use queries
addressing the category hierarchy of a “500 Mb XMark document”. If the
fact that the category hierarchy makes up at most 3% of XMark documents
is omitted, document size is probably misleading.

◦ Document tree depth has an impact on document size, and determines
the maximum length of downward path queries with non-empty results.

◦ Fan-out is the maximum number of children of a node. It has an impact on
document size; it may also impact some storage strategies, and thus query
performance.

MemBeR: A Micro-benchmark Repository for XQuery 157

Size, depth and fan-out, however, are insufficient to account for all interest-
ing characteristics of a document. We identify the following important data set
characteristics:
Presence of Schemas and Constraints. A DTD or XML Schema may be
exploited for optimization purposes. More generally, one could envision XML
query processors taking advantage of other classes of constraints, such as dif-
ferent type systems [2], or a-posteriori schemas extracted from schema-less data
sets [13, 14]. A performance-oriented benchmark should state which constraints
are used, if any. Proper type handling is one aspect of correctness.
Text-Centric vs. Data-Centric. Different XML data sets exhibit different
ratios between the complexity of the XML structure tree, and the weight of the
leaves (text). Both extremes are useful in different applications, and real-life data
sets are in-between; the tree-to-text ratio may impact query performance. Mixed
contents elements, frequent in text-centric documents, may raise correctness
issues, as some systems do not support them.
Atomic Value Types. The XQuery data model provides a rich set of atomic
value types. However, most existing value-based XML indexing techniques pro-
posed so far ignore these types and XQuery’s many value coercions [10, 11];
meshing a value index with coercion-based semantics is quite complex [18].
Frequency of Recursion. Data recursion is an interesting feature, encountered
in real-life XML documents [19], and affecting many evaluation techniques. Thus,
precise evaluations must specify whether recursive elements were absent, rare,
or frequent in the input.
Tag Distribution. In some documents, each tag may appear on only one path;
in some others, numerous paths may lead to elements having the same name,
maybe due to recursion, maybe not. For instance, in some (but not all) systems,
the XMark-inspired query //item//keywordwould be evaluated by a structural
join of all item and all keyword element IDs, even though many keywords do
not appear under items.
Values. The actual values found in the document’s text nodes must also be
described for measures using queries with conditions on values. Value distribu-
tion controlled in synthetic data sets [23]. Value domain, size distribution, and
contents also impact query evaluation.
Partitioning of Data in Documents. The XML and XQuery specifications
give an important place to the notion of document, which can be seen as a
physical segment of an XML data set. XQueries may combine information from
several documents. Thus, it is important to understand how processors cope with
input being fragmented over several documents.

Coming up with one unified data set, even a parametric one, on which all
the above aspects can be varied at will, is hardly feasible. Notice that some
parameters are inter-related and thus cannot be independently controlled, such
as size, depth, and fan-out. We thus include in the benchmark repository two
broad classes of synthetic documents. Documents in the first class are on pur-
pose schema-less, and allow full control over the above mentioned parameters.

158 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

Documents in the second class are schema-driven; we rely on ToXGene [1] to
generate those documents. We briefly describe each class of documents next.

Schema-Less Parametric Data Set. This data set is produced by a data
generator we implemented. It allows controlling: the maximum node fanout,
maximum depth, total tree size (number of elements), document size (disk oc-
cupancy), the number of distinct element names in the document, and the dis-
tribution of tags inside the document. Required parameters are: either tree size
or document size; and, either depth or fan-out. The number of distinct element
names is 1 by default; elements are named a1, a2 etc.

The distribution of tags within elements can be controlled in two ways. Global
control allows tuning the overall frequency of element named a1, a2, ..., an.
Labels may nest arbitrarily. Uniform and normal distributions are available.
Per-tag control allows specifying, for every element name ai, the minimum and
maximum level at which ai can appear may be set; furthermore, the relative
frequency of ai elements at that level can be specified as a number between 0.0
and 1.02. Global distributions allow generating trees where any ai may appear
at any level. Close to this situation, for instance, is the Treebank data set3,
corresponding to annotated natural language; tags represent parts of speech
and can nest quite freely. Per-tag distributions produce more strictly structured
documents, whereas e.g., some names only appear at level 3, such as article
and inproceedings in the DBLP data set4, other elements appear only below
level 7, such as keywords in XMark etc.

Fan-out, depth and tag distribution impact: the disk occupancy of many
XML storage and structural indexing schemes; the complexity and precision of
XML statistical synopses; the size of in-memory structures needed by an XML
stream processor; and, the performance of path expression evaluation for many
evaluation strategies. Thus, we will rely on this data set, and devise measures
varying all these parameters, for assessing such aspects.

The number and size of text values follow uniform or normal distributions, as
illustrated in μB3 in Section 4. Values can be either filled with random charac-
ters, or taken from the Wikipedia text corpus (72 Mb of natural language text,
in several languages). The latter is essential in order to run full-text queries;
neither XMark nor MBench consider this issue.

Schema-Derived Data Sets. The ToXGene [1] XML generator produces XML
documents conforming to a type description expressed in a subset of XML
Schema. Furthermore, ToXGene provides hooks for controlling: the frequency
of a given element type, the simple values found in leaf nodes, the sharing of
values in several nodes (thus, the size of various join results), the specific values
to fill in specific places in the document etc. Thus, we adopt ToXGene as a useful
tool for controlled generation of schema-endowed documents.

2 The generator checks the frequencies of several ais at a given level for consistency.
3 Available at http://www.cs.washington.edu/research/xml/datasets.
4 Available at http://dblp.uni-trier.de/xml.

MemBeR: A Micro-benchmark Repository for XQuery 159

Fig. 5. Sample snapshot of Member’s Web interface.

6 Conclusion and Perspectives

We have described a micro-benchmark repository approach for evaluating
XQuery processing techniques. Micro-benchmarks provide the proper tools for
systematically evaluating approaches to XML query evaluation. We have de-
scribed the design principles underlying our repository and we have given several
examples of micro-benchmarks and their applications.

We have started implementing our repository over a Web interface, avail-
able at http://ilps.science.uva.nl/Resources/MemBeR/. For now, it con-
tains some micro-benchmarks, with their categorization criteria, targets, scenar-
ios etc. A sample snapshot corresponding to the page of micro-benchmark μB4

is depicted in Figure 5.
We are currently adding to the repository several other micro-benchmarks,

including those mentioned in Section 3. We plan to extract candidate features
from the XQuery specification itself, and also from XML query processing ar-
ticles recently published in major database conferences. These may also yield
inspiration for micro-benchmark queries, although our methodology is more rig-
orous. In parallel, we are inviting researchers and system designers to send us
suggestions of features, measures, or micro-benchmarks they deem interesting,
or even better, contribute some benchmarks and become a micro-benchmark
reviewers.

The need for precise and meaningful assessment of XML query processors
is becoming stringent for research to advance, and for communicating results.
Micro-benchmarks as a step forward; we started MemBeR to develop compre-
hensive, well-documented ones.

160 Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels

References

1. D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. ToXgene: a template-
based data generator for XML. In WebDB, 2002.

2. V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for
XML query processing. In PADL, pages 235–252, 2005.

3. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0 An XML Query Language, W3C Working Draft, April 2005.
http://www.w3.org/TR/xquery.

4. Timo Böhme and Erhard Rahm. Xmach-1: A benchmark for XML data manage-
ment. In Proceedings of BTW2001, Oldenburg, 7.-9. März, Springer, Berlin, March
2001.

5. S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li, U. Nambiar, and B. Wadhwa.
X007: Applying 007 benchmark to XML query processing tool. In CIKM, pages
167–174. ACM, 2001.

6. World Wide Web Consortium. XML path language (XPath) version 1.0 – W3C
Recommendation, 2000. http://www.w3.org/TR/xpath.html.

7. World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text – W3C Work-
ing Draft, July 2004. http://www.w3.org/TR/xquery-full-text/.

8. World Wide Web Consortium. W3C XQuery Update Requirements – W3C Work-
ing Draft, 2005. http://www.w3.org/TR/xquery-update-requirements/.

9. World Wide Web Consortium. XML path language (XPath) version 2.0 – W3C
Working Draft, 2005. http://www.w3.org/TR/xpath20/.

10. World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Formal Semantics –
W3C Working Drafts, 2005. http://www.w3.org/TR/xquery-semantics/.

11. World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators,
2005. http://www.w3.org/TR/xpath-functions/.

12. M. Francescet. XPathMark: an XPath benchmark for the XMark Generated Data.
In XSym, 2005.

13. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: Learn-
ing document type descriptors from XML document collections. Data Min. Knowl.
Discov., 1(7):23–56, 2003.

14. R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimiza-
tion in semistructured databases. In VLDB, pages 436–445, 1997.

15. G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation.
In PODS, pages 179–190, 2003.

16. J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A light but formal
introduction to XQuery. In XSym, pages 5–20, 2004.

17. H .V. Jagadish, S. Al-Khalifa, A. Chapman, L. V.S. Lakshmanan, A. Nierman,
S. Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, , and C. Yu.
Timber: a native XML database. VLDB Journal, 11(4), 2002.

18. J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman. Query optimiza-
tion for semistructured data, 1998. Tech. report.

19. L. Mignet, D. Barbosa, and P. Veltri. The XML web: A first study. In WWW
Conference, 2003.

20. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.
In PODS, 2002.

21. P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In SIGMOD, pages 903–908, 2004.

MemBeR: A Micro-benchmark Repository for XQuery 161

22. S. Paparizos, Y. Wu, L. Lakshmanan, and H. Jagadish. Tree logical classes for
efficient evaluation of XQuery. In SIGMOD, 2004.

23. K. Runapongsa, J. Patel, H.V. Jagadish, Y. Chen, and S. Al-Khalifa. The Michigan
benchmark: Towards XML query performance, 2001.
http://www.eecs.umich.edu/db/mbench.

24. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, M. J. Carey, I. Manolescu,
and R. Busse. Why and How to Benchmark XML Databases. SIGMOD Record,
3(30):27–32, 2001.

25. B. Yao, T. Özsu, and N. Khandelwal. XBench benchmark and performance testing
of XML DBMSs. In ICDE, pages 621–633. IEEE Computer Society, 2004.

Main Memory Implementations
for Binary Grouping

Norman May and Guido Moerkotte

University of Mannheim
B6, 29

68131 Mannheim, Germany
{norman,moer}@pi3.informatik.uni-mannheim.de

Abstract. An increasing number of applications depend on efficient
storage and analysis features for XML data. Hence, query optimization
and efficient evaluation techniques for the emerging XQuery standard
become more and more important. Many XQuery queries require nested
expressions. Unnesting them often introduces binary grouping.
We introduce several algorithms implementing binary grouping and an-
alyze their time and space complexity. Experiments demonstrate their
performance.

1 Motivation

Optimization and efficient evaluation of queries over XML data becomes more
and more important because an increasing number of applications work with
XML data. In XQuery – the emerging standard query language for XML –
queries including restructuring or aggregation often require nested queries. For
example, the following query returns for each of the fifty richest persons of the
world the number of countries with smaller gross domestic product (GDP) than
the person’s total capital.

for $p in document("richest-fifty.xml")//person
return
<result>
<person> { $p/name } </person>
<count-richer> {

count(for $c in document("countries.xml")//country
where $p/capital gt $c/gdp
return $c) }

</count-richer>
</result>

This query combines data of two different documents and performs grouping
and aggregation over the XML data. Note that each country can contribute to
the count of multiple persons, and that a non-equality predicate is used to relate
items from both documents.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 162–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Main Memory Implementations for Binary Grouping 163

Direct nested evaluation of this query is highly inefficient because for each
person the nested FLWR expression is evaluated, demanding a scan of the
countries document. Fortunately, the query can be unnested introducing bi-
nary grouping [17]. Moreover, optimizers can then apply algebraic equivalences
to further improve performance. However, efficient implementations for binary
grouping are not available yet. If they were, the optimizer could choose among
them, ensuring an efficient query evaluation. We fill this gap and present sev-
eral main-memory algorithms for implementing binary grouping. Further, we
analyze their time and space complexity. The different algorithms will require
different conditions to hold. Enumerating them then enables the query optimizer
to select the most efficient implementation of binary grouping for a given situa-
tion. Experiments demonstrate that performance can be improved by orders of
magnitude. Due to space constraints, we restrict ourselves to the formulation of
algorithms working on sets of tuples. However, an extension to bags or sequences
is not difficult (see [18]). Let us stress that binary grouping is useful not only
in the context of XQuery. It has also been successfully applied to unnest nested
OQL-queries [4, 20] and to evaluate complex OLAP queries [2].

The paper is structured as follows. Section 2 presents the definition of binary
grouping and surveys properties of predicates and aggregate functions. They
form the basis for the selection of an efficient implementation for the binary
grouping operator. The main contribution of this paper – Section 3 – introduces
several algorithms for binary grouping and analyzes their time and space com-
plexity. Exemplary performance results are given in Section 4. More detailed
experimental data is presented in [18]. Before concluding this paper, Section 5
reviews related work.

2 Preliminaries

2.1 The Algebra

We will only present the operators needed for our exposition. For an extensive
treatment of our algebra we refer to [4]. Our framework is extendible to sequences
as required in XQuery (cf. [17] for this algebra and related work).

The algebra works on sets of unordered tuples. Each tuple contains a set
of variable bindings representing the attributes of the tuple. Single tuples are
constructed by using the standard [·] brackets. The concatenation of tuples and
functions is denoted by ◦. The set of attributes defined for an expression e is
defined as A(e). The set of free variables of an expression e is defined as F(e).

For an expression e1 possibly containing free variables and a tuple t, e1(t)
denotes the result of evaluating e1 where bindings of free variables are taken
from variable bindings provided by t – this requires F(e1) ⊆ A(t). Note that
this can also be used for function application. We denote NULL values by .

The semantics of the binary grouping operator is defined by the map operator
(χ) and the selection (σ). If their input is the empty set (∅), their output is also
empty.

Let us briefly recall selection with predicate p defined as σp(e) := {x|x ∈
e, p(x)} and map defined as χa:e2(e1) := {y ◦ [a : e2(y)]|y ∈ e1}. The latter

164 Norman May and Guido Moerkotte

extends a given input tuple y ∈ e1 by a new attribute a whose value is computed
by evaluating e2(y).

Definition 1. We define the binary grouping operator as:

e1Γg;A1θA2;fe2 := χg:f(σA1θA2 (e2))(e1)

In this definition we call e1 grouping input and e2 aggregation input.

Note that the result of the binary grouping operator is empty if and only if the
grouping input evaluates to an empty set. When the aggregation input is empty
we assume that f(∅) is well-defined, and f(∅) is returned as the result. In many
cases f will be an aggregation function such as sum. We refer to [18] for examples
of applying these operators.

2.2 Properties of Predicates

To find the most efficient implementation for binary grouping, we take a closer
look at the properties of predicates. Therefore, we distinguish, for example,
symmetric, irreflexive predicates (�=) from antisymmetric, transitive predicates
(<,≤, >,≥).

2.3 Properties of Aggregate Functions

Aggregate functions can be decomposable and reversible [3]. These properties
help us to find the most efficient implementation for binary grouping. To make
the paper self-contained, we recall the definitions of these properties.

Let N be the codomain of a scalar aggregate function f : X → N over some
set X of tuples. In the definitions below, we will make use of (sub-) sets X , Y ,
and Z, with X = Y

.∪ Z and Y ∩ Z = ∅.
Definition 2. We say f : X → N is decomposable if there exist functions

α : X → N ′

β : N ′,N ′ → N ′

γ : N ′ → N
with f(X) = γ(β(α(Y), α(Z)))

Decomposable aggregate functions allow us to aggregate on subsets of the whole
data and combine the results of these computations to the aggregate over the
whole data. Obviously, the common aggregate functions are decomposable.

Definition 3. A decomposable scalar function f : X → N is called reversible
if for β there exists a function β−1 : N ′,N ′ → N ′ with

f(Z) = γ(β−1(α(X), α(Y)))

for all X, Y , and Z with X = Y
.∪ Z and Y ∩ Z = ∅.

Main Memory Implementations for Binary Grouping 165

α

A1 s c

1 5 2
2 9 2
3 0 0

14 4

(a) after matching

β−1

A2 s c

1 9 2
2 5 2
3 14 4

γ

A2 a

1 4.5
2 2.5
3 3.5

(b) �=-table

β

A2 a

1 14 4
2 9 2
3 0 0

γ

A2 a

1 3.5
2 4.5
3

(c) ≤-table

Fig. 1. Example of the reversible aggregate function avg

Reversible scalar aggregates allow us to compute the value of an aggregate
function over some subset by computing the aggregate function over some su-
perset. Using this result, we can use the inverse function β−1 to compute the
desired value for the subset. As examples sum, count, and avg are reversible,
min and max are not.

For function avg, we define α(X) = [s : sum(X), c : |X |] computing the sum
and cardinality of each group, β([s : s1, c : c1], [s : s2, c : c2]) = [s : s1 + s2, c :
c1 + c2], β−1([s : s1, c : c1], [s : s2, c : c2]) = [s : s1 − s2, c : c1 − c2] combining the
sums and counts of two groups, and γ([s : s1, c : c1]) = [a : s1/c1] yielding the
average for each group.

The θ-table proposed in [3] exploits the properties of decomposable and re-
versible aggregate functions. Conceptually, the θ-table is an array with an entry
for each group that stores data collected during aggregation. First, partial ag-
gregation for some subset of the matching data is done. Then the results of the
first step are combined to the final result for each group. The first step avoids
duplicate work and is the source of improved efficency, while the second step
benefits from the properties of the predicate and the aggregation function.

To make this more concrete, let us assume that after matching the grouping
input and aggregation input the θ-table contains the data shown in Figure 1(a).
In case of the �=-table, aggregation is done with data matched with = instead
of �=. In addition, the values for sum and count over the whole data set are
collected in an auxiliary entry shown in the last row of the table (c.f. Fig. 1(b)).
This auxiliary entry is used to obtain the sum and count values of each group
using function β−1. The final result is computed using function γ. For the first
row in Figure 1(b) we have β−1([14, 4], [5, 2]) = [14 − 5, 4 − 2] = [9, 2] and
γ([9, 2]) = 4.5.

With a ≤-table aggregation is only done on the closest matching group. The
final result of each group is computed in a walk backwards through the table,
incrementally combining the aggregated values of each group using function β.
Applying function γ to each group yields the final result for each group. For the
second row in Figure 1(c), we have β([0, 0], [9, 2]) = [9, 2] and γ([9, 2]) = 4.5.

3 Algorithms

3.1 Notation
The following notation will be used in the complexity formulas to describe the
time and space complexity of the various algorithms:

166 Norman May and Guido Moerkotte

f := duplication factor
g := storage space per group
α := load factor of the hash table
l := Θ(1 + α)
n := max(|e1|, |e2|)

The duplication factor as defined in [1] is the ratio of the number of tuples before
duplicate elimination to the number of tuples after duplicate elimination. Note
that α, the load factor of the hash table, changes while values are inserted into
the hash table. We will ignore this fact and use the load factor as an upper bound
after all values have been inserted into the hash table. Therefore, all complexity
formulas will represent upper bounds. For brevity reasons, we denote l = Θ(1+α)
as the time for a lookup in the hash table [5], and n as the maximum cardinality
of both inputs.

In the exposition of each alternative algorithm we will follow the same basic
structure: First, we state the assumptions on the predicate and the aggregate
function as introduced in Section 2. Then, we present the algorithm in pseudo
code and deduce the time and space complexity from the code. Finally, we ex-
plain implementation details. All operators are implemented as iterators [9] con-
sisting of an open function for initialization, a next function which returns
one result tuple of the operator for each call, and a close function that does
some deinitialization. The implementations in our experiments are set-based.
The pseudo code uses the following notations:

p(x, y) – returns the result of evaluating the predicate A1θA2, where
A1 ∈ A(e1), A2 ∈ A(e2), and θ a comparison as described in
Section 2

T – a tuple of either input
G – a tuple representing a group

GT – an auxiliary grouping tuple
ζα(G) – initializes a tuple G appropriately for α,

α(G, T) – returns the result of evaluating function α on a group G with
tuple T from the aggregation input

β(G1, G2),
β−1(G1, G2)

– return the result of evaluating β and β−1 on groups G1 and G2

γ(G) – returns the result of γ on a group G

Figure 2 summarizes the algorithms we present in this paper. The left part of
the table contains the algorithms with their time and space complexity derived
from their code. The right part of the table surveys the assumptions for each
algorithm. Thus, this table can be used as a guide to the most efficient imple-
mentation. The assumptions are related to the inputs e1 and e2, the predicate
A1θA2, and the function f as used in Definition 1.

The last column indicates the ratio of improvement in execution time over the
direct nested evaluation of the nested query. For simplicity, we restrict ourselves
only to sorted input for both the grouping and aggregation input for an input size
that all algorithms were capable to evaluate. We use the algorithm NestedSort

Main Memory Implementations for Binary Grouping 167

Algorithm Assumptions
Name Time Space e1 e2 A1θA2 f Δ

Nested l
f
|e1||e2| g

f
|e1| - - - - 0.95-1.2

NLBinGroup l
f
|e1||e2| + (l + 1

f
)|e1| g

f
|e1| - - - - 0.65-0.75

HashBinGroup (l + 1
f
)|e1|+

O((|e1|
f

+ |e2|) lg |e1|
f

)

(1+g)|e1|
f

- - ¬SY, T D 1300

TreeBinGroup |e1|
f

+ O((|e1| + |e2|) lg |e1|
f

) g
f
|e1| - - ¬SY, T D 1300

EQBinGroup l(|e1| + |e2|) + |e1|
f

g
f
|e1| - - ¬R, SY, ¬T RE 1850

NestedSort 1
f
|e1||e2| O(1) S - - - 1.0

SortBinGroup 1
f
|e1||e2| O(1) S - - - 1.1-1.2

LTSortBinGroup |e1| + |e2| O(1) S S ¬SY, T - 2100

S sorted R reflexive
SY symmetric
T transitive

D decomposable
RE reversible

Fig. 2. Assumptions and complexity for the implementations of the binary grouping
operator

as the basis defining it as Δ = 1.0. For some algorithms ranges for Δ are given
because they are applicable for different types of predicates. Values of Δ >
1.0 indicate an improvement by a factor Δ. Obviously, algorithms with more
assumptions evaluate up to three orders of magnitude faster than the nested-
loops-based algorithms with fewer assumptions.

3.2 Direct Evaluation of Nested Query

Nested evaluation is most generally applicable and the basis of comparison for
implementations of the binary grouping operator.

In general, nested queries are implemented by calling the nested query for
each tuple given to the map operator. However, more efficient techniques were
proposed to evaluate nested queries [11]. The general idea is to memoize the
result of the nested query for each binding of the nested query’s free variables.
When the same combination of free variables is encountered, the result of the
previous computation is returned. In general, a hash table would be employed
for memoizing which demands linear space in the size of the grouping input.
For sorted grouping input, only the last result needs to be stored resulting in
constant space.

We have implemented both strategies, and we will refer to these strategies
by Nested and NestedSort. Because of its simplicity we omit the pseudo code
for the nested strategies and restrict ourselves to the analysis of the complexity
(cf. Fig. 2). Both strategies expose quadratic time complexity because the nested
query must be executed for each value combination of free variables generated
by the outer query. In absence of duplicates, this is also true when memoization
is used.

168 Norman May and Guido Moerkotte

3.3 Nested-Loop-Implementation of Binary Grouping

NLBinGroup. There are no assumptions on the predicate, the aggregate func-
tion, or the sortedness of any input.

Open

1 open e1

� detect groups
2 while T ← next e1

3 do G ← HT.Lookup(T)
4 if G does not exist
5 then G ← HT.Insert(T)

� initialize group
6 ζα(G)
7 close e1

� match aggregation input to groups
8 open e2

9 while T ← next e2

10 do for each group G
in the HT

11 do if p(G,T)
12 then G ← α(G, T)
13 close e2

14 htIter ← HT.Iterator

Next

� next group in the hash table
1 if G ← htIter .Next
2 then return γ(G)
3 else return

Close

1 HT.CleanUp

(a) NLBinGroup

Open

1 open e1

2 ζα(GT) � initialize group tuple
3 while T ← next e1

4 do G ← HT.Lookup(T)
5 if G does not exist
6 then G ← HT.Insert(T)

� initialize group
7 ζα(G)
8 close e1

9 open e2

10 while T ← next e2

11 do G ← HT.Lookup(T)
12 if G exists
13 then G ← α(G ,T)
14 if predicate is �=
15 then GT ← α(GT, T)
16 close e2

17 htIter ← HT.Iterator

Next

1 if G ← htIter .Next
2 then if predicate is �=
3 then G ← β−1(G,GT)
4 return γ(G)
5 else return

Close

1 HT.CleanUp

(b) EQBinGroup

Fig. 3. Pseudo code of NLBinGroup and EQBinGroup

We call the naive nested-loops-based implementation proposed in [2, 9] NL-
BinGroup. The pseudo code for this algorithm is shown in Figure 3(a). Most
work is done in function open. First, the grouping input is scanned, and all
groups are detected and stored in a hash table (l|e1| time). Most of the following
algorithms will follow this pattern. Next, the aggregation input is scanned once
for each group in the hash table. The tuples from the aggregation input are
matched with the tuple of the current group using the predicate. This matching
phase is similar to a nested-loop join and requires O(l

f |e1||e2|) time. When a
match is found, function α is used for aggregation. After this matching phase a

Main Memory Implementations for Binary Grouping 169

traversal through all groups in the hash table is done to execute function γ to
finalize the groups (|e1|

f time). The complete complexity formulas can be found
in Figure 2.

From the complexity equations we see that this algorithm introduces some
overhead compared to the hash-based case of Nested because several passes
through the hash table are needed. Hence, the time complexity is slightly higher
then the direct nested evaluation. The following sections discuss more efficient
algorithms for restricted cases.

3.4 Implementation of Binary Grouping with = or �=-Predicate

EQBinGroup. If the predicate is not an equivalence relation, the aggregate
function must be decomposable and reversible.

We generalize the �=-Table defined in [3] for predicate �=. Instead of an array,
we use a hash table to store an arbitrary number of groups. When collision lists
do not degrade, the asymptotic runtime will not change, however. The algorithm
in Figure 3(b) extends NLBinGroup.

In function Open detecting all groups requires l|e1| time. In line 11 we do
matching with equality for both kinds of predicates. But in line 15 all tuples
are aggregated in a separate tuple GT using function α if the predicate is �=.
Alltogether matching requires l|e2| time.

When we return the result in a final sweep through the hash table (|e1|
f time)

we have to apply the reverse function β−1 when the predicate is �= (cf. line 3
in Next). For that, we use the auxiliary grouping tuple GT and the group G
matched with = and compute the aggregation result for �=. For scalar aggregate
functions, this computation can be done in constant time and space. For both
types of predicates, groups are finalized using function γ.

Compared to the directly nested evaluation and hash-based grouping, the
time complexity can be improved to linear time and linear space complexity (cf.
Fig. 2).

Figure 4 shows how EQBinGroup implements the idea of the �=-table intro-
duced in Section 2. Figure 4(b) shows the content of the hash table after function
open. For each detected group, the tuple for attribute a stores the value of at-
tribute A1, the sum, and the count of all matching tuples of the group. The
additional tuple GT is added at the bottom of the table. Note that the group
with value 3 did not find any match, but a properly initialized tuple for it ex-
ists in the hash table. Applying function β−1 to each group and GT and then
function γ as described in Section 2 produces the final result (cf. Fig. 4(c)).

3.5 Implementation of Binary Grouping with ≤-Predicate

These algorithms are applicable if the predicate is antisymmetric, transitive,
and the aggregate function is decomposable; no assumptions are made on the
sortedness of any inputs.

In this paper we investigate a hash table and a balanced binary search tree to
implement the ≤-table proposed in [3]. The advantage of this approach compared

170 Norman May and Guido Moerkotte

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

(a) Input data

(R1)Γa;A1 �=A2;avg(B)(R2)

A1 a

1 〈[1, 5, 2]〉
2 〈[2, 9, 2]〉
3 〈[3, 0, 0]〉

GT 〈[, 14, 4]〉

(b) After open

(R1)Γa;A1 �=A2;avg(B)(R2)

A1 a

1 〈[1, 4.5]〉
2 〈[2, 2.5]〉
3 〈[3, 3.5]〉

GT 〈[, 14, 4]〉

(c) Final result

Fig. 4. Example of the evaluation of EQBinGroup

Open

1 open e1

2 for T ← next e1

3 do G ← HTl.Lookup(T)
4 if G does not exist
5 then G ← HT.Insert(T)

� initialize group
6 ζα(G)
7 close e1

8 sort groups by matching
predicate of e1

9 open e2

10 for T ← next e2

11 do G ← minimal group in
≤-Table ≥ T

12 G ← α(G, T)
13 close e2

14 htIter ← ≤-Table.Iterator

Next

� next group in the ≤-table
1 if G ← htIter .Next
2 then G ← β(G, successor(G))
3 return γ(G)
4 else return

Close

1 HT.Cleanup
2 ≤-Table.CleanUp

(a) HashBinGroup

Open

1 open e1

2 for T ← next e1

3 do if == RB-Tree.Lookup(T)
4 then G ← RB-Tree.Insert(T)

� initialize group G
5 ζα(G)
6 close e1

7 open e2

8 while T ← next e2

9 do G ← minimal group in
RB-Tree ≥ T

10 G ← α(G, T)
11 close e2

12 G ← RB-Tree.Maximum

Next

1 if G �= RB-Tree.Minimum
2 then G ← β(G,RB-Tree.Succ(G))
3 G′ ← γ(G)
4 G ← RB-Tree.Pred(G)
5 return G ′

6 else return

Close

1 RB-Tree.CleanUp

(b) TreeBinGroup

Fig. 5. Pseudo code of HashBinGroup and TreeBinGroup

to using an array is that no upper bound for the number of groups needs to be
known. Since the assumptions are the same for both alternatives, we will only
discuss implementation details.

Main Memory Implementations for Binary Grouping 171

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

(a) Input data

(R1)Γa;A1≤A2;sum(B)(R2)

A1 a

1 〈[1, 5]〉
2 〈[2, 9]〉
3 〈[3, 0]〉

(R1)Γa;A1≤A2;sum(B)(R2)

A1 a

1 〈[1, 14]〉
2 〈[2, 9]〉
3 〈[3, 0]〉

(b) HashBinGroup

(R1)Γa;A1≤A2;sum(B)(R2)

〈[2, 9]〉

〈[1, 5]〉 〈[3, 0]〉

(R1)Γa;A1≤A2;sum(B)(R2)

〈[2, 9]〉

〈[1, 14]〉 〈[3, 0]〉

(c) TreeBinGroup

Fig. 6. Example for the evaluation of HashBinGroup and TreeBinGroup

HashBinGroup. This algorithm, outlined in Figure 5(a), extends the NL-
BinGroup operator. It is formulated in terms of predicate <.

First, all groups are identified using a hash table (l|e1| time). Before match-
ing the tuples from the aggregation input, these groups are sorted according
to the predicate (O(|e1|

f lg |e1|
f) time). This can be done in a separate array in

which the items in the hash table are referenced. In the matching phase binary
search is employed to find the closest group that still matches with the predicate
(O(|e2| lg |e1|

f) time). Aggregation is done using function α. To compute the final

result, one walk backwards through the array visits each group (|e1|
f time). First,

the aggregated values of distinct groups are combined using function β. Then,
function γ computes the final result of the group. One must be careful not to
destroy the aggregated result of the previous group when applying function γ.
The overall complexity can be found in Fig. 2.

TreeBinGroup. In an alternative implementation shown in Figure 5(b), we use
a balanced search tree (e.g. a Red-Black-Tree) to identify all groups (O(|e1| lg |e1|

f)
time). The search tree structure implies the inclusion of groups. Thus, no sorting
is needed after this step. Matching of tuples is done by a lookup in the search
tree (O(|e2| lg |e1|

f) time). When a group cannot be found, matching and aggre-
gation is done on the last node in the tree that was visited. As with the previous
algorithm, a backward traversal through the tree is done to aggregate the final
result for each group using function γ (|e1|

f time). The resulting complexity is
summarized in Fig. 2.

Comparison of the Implementations. Figure 6 resumes with the example in Sec-
tion 2 to trace the evaluation of HashBinGroup and TreeBinGroup showing

172 Norman May and Guido Moerkotte

the state after open. Note that the groups must be sorted to find the closest
matching group for aggregation with function α. This is achieved either by sort-
ing the groups in the hash table or implicitly during insertion into the binary
search tree. Each tuple stores the value of the grouping attribute and the aggre-
gated result for the group. The result of the final walk backwards through the
≤-table computes the final result using function β and γ.

When we compare the complexity formulas we observe that sorting is dom-
inant in HashBinGroup, and insertion is dominant in TreeBinGroup. Note
that in both cases, we can remove duplicates during insertion. The hash-based
implementation removes duplicates before sorting. In contrast, lookup of all
items in e1 in the balanced search tree demands O(|e1| lg |e1|

f) time. This gives
the hash-based implementation a potential advantage. On the other hand, the
hash-based implementation does not degrade nicely when the collision lists on
the hash table are not bounded by a constant any more. This can lead to linear
search time in the collision lists (l ∈ O(|e1|), where l is the size of the collision
list). Thus, the hash-based implementation depends on a good hash function.

3.6 Implementations of Binary Grouping on Sorted Input

When the grouping input or the aggregation input is sorted, we can improve the
algorithm NLBinGroup.

SortBinGroup. First, we assume that only the grouping input is sorted.
Figure 7(a) presents the pseudo code for this algorithm. With sorted grouping

input, groups can be detected efficiently because only subsequent tuples need to
be compared (line 1 in Next). This can be done in constant space.

Matching the tuples of the aggregation input can be done with an algorithm
similar to a 1:N sort-merge join, i.e. a sort-merge join algorithm that assumes
that no duplicates occur on the left input. In the general case of an arbitrary
predicate, the aggregation input needs to be scanned once for each group. This
is done in O(1

f |e1||e2|) time. It is also the reason for having no assumptions on
the sortedness of the aggregation input.

Since the algorithm iterates through each group and matches all tuples from
the aggregation input, groups does not have to be combined. Thus, the aggre-
gation function need not be decomposable.

LTSortBinGroup. In addition to the assumptions of the previous algorithm,
we now assume a antisymmetric and transitive predicate (e.g. <, or ≥). Both
inputs need to be sorted. The direction of sorting depends on the predicate used.
For example, for predicates < and ≤ both inputs need to be sorted in descending
order, for > and ≥ in ascending order. No restrictions apply to the aggregation
function.

These assumptions allow us to scan both inputs only once resulting in a time
complexity of |e1| + |e2|. Each group resumes aggregation on the aggregated
result of the previous group. For aggregation, we always use function α. The

Main Memory Implementations for Binary Grouping 173

Open

1 open e1

2 open e2

Next

1 if G ← next group in e1

2 then while T ← next e2

3 do if p(G, T)
4 then G ← α(G, T)
5 close e2

6 open e2

7 return γ(G)
8 else return

Close

1 close e1

2 close e2

(a) SortBinGroup

Open

1 open e1

2 open e2

3 ζα(GT) � initialize group tuple

Next

1 if G ← next group in e1

2 then copy group attributes of

G into GT
3 while (T ← next e2) ∧

p(GT ,T)
4 do GT ← α(GT, T)

� keep aggregated result in GT
5 G ← γ(GT)
6 return G
7 else return

Close

1 close e1

2 close e2

(b) LTSortBinGroup

Fig. 7. Pseudo code of SortBinGroup and LTSortBinGroup

result of finalizing a group using function γ is stored in a separate tuple, so
that the current value of aggregation is not destroyed (cf. line 5 in Next). The
algorithm stated in Figure 7(b) is formulated in terms of < or ≤ as predicates.

4 Experiments

We have implemented all algorithms in a prototype run-time system using GCC
C++ version 3.3.4. All queries were executed on an Intel Pentium M with 1.4
GHz and 512MB RAM running Linux with 2.6.8 Kernel. In several experiments
the performance of each algorithm was evaluated for different distributions. For
space reasons we can only present a tiny fraction of the experimental data and
refer to [18] for the details of the benchmark and the complete set of experimental
results.

The cardinality of the input sequences e1 and e2 ranged between 128 and
8388608. The grouping input e1 and the aggregation input e2 were of equal size.
The largest data set contained 63MB of data. The input for a query was loaded
into main memory before executing the queries.

Figure 8 summarizes the most interesting results of our experiments. It shows
the elapsed time for sorted input for both the grouping input and aggregation
input for the predicate �= and >.

Figure 8(a) clearly shows that EQBinGroup is the most efficient algorithm
for predicate �=. It performs orders of magnitude faster than the nested-loops-
based algorithms Nested, NestedSort, NLBinGroup and SortBinGroup

174 Norman May and Guido Moerkotte

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (Tuple)

NestedSort
Nested

NLBinGroup
EQBinGroup

SortGroup

(a) Predicate �=

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (# Tuple)

NestedSort
Nested

NLBinGroup
HashBinGroup
TreeBinGroup
SortBinGroup

LTSortBinGroup

(b) Predicate >

Fig. 8. Group input and aggregation input sorted

which are hard to distinguish in their query performance. However, since EQBin-
Group loads all detected groups into a main memory data structure, its per-
formance suffers when memory gets scarce. In our experiments, this happens for
more than 2 million groups.

Figure 8(b) presents the experimental results for predicate >. The most ef-
ficient algorithm is LTSortBinGroup which is suited best for sorted input.
When the input is not sorted, both HashBinGroup and TreeBinGroup are
efficient algorithms with similar performance. When they run out of memory,
both reveal the same weakness as EQBinGroup.

Among the nested-loop-based algorithms NLBinGroup is slowest. The in-
efficiency was caused by the iterator used for traversing the hash table. Only
SortBinGroup exposes slightly improved efficiency compared to direct nested
evaluation using memoization.

Summarizing, our experiments confirm the theoretical results from Section 3.
We refer to [18] for more experimental results and a more detailed analysis.

5 Related Work

To the best of our knowledge, this paper is the first to investigate efficient
implementations for binary grouping. Only one implementation corresponding
to the NLBinGroup was presented so far [2].

However, previous work justifies the importance of binary grouping. Slightly
different definitions of it can be found in [2, 3, 20]. Only [3] describes possible
implementations. These papers enumerate use cases for binary grouping. In this
paper we propose efficient implementations of binary grouping and evaluate their
efficiency.

In addition, implementation techniques known for other operators apply for
the binary grouping operator as well. The idea of merging the functionality
of different algebraic operators to gain efficiency is well known. In [21] query
patterns for OLAP queries are identified. One of these patterns – a sequence of

Main Memory Implementations for Binary Grouping 175

grouping and equi-join – is similar to the implementation of the binary grouping
operator. Sharing hash tables among algebraic operators was proposed in [12].

Our work also relates to work comparing sort-based and hash-based imple-
mentations of algebraic operators [7, 9, 10, 13, 14, 19]. However, they concen-
trate on implementations of equijoins. Non-Equality joins have been studied first
in [8].

We presented main-memory implementations of the binary grouping opera-
tor. Implementation techniques that materialize data that does not fit into main
memory can be applied to the binary grouping operator. We refer to [1, 6, 9, 15,
16] for such proposals.

6 Conclusion and Future Work

Binary grouping is a powerful operator to evaluate analytic queries [2] or to
unnest nested queries [4, 17]. We have introduced, analyzed, and experimentally
evaluated main memory implementations for binary grouping. Further, we have
identified the conditions under which each algorithm is applicable.

The results show that query processing time can be improved by orders of
magnitude, compared to nested evaluation of the query. Hence, binary grouping
is a valuable building block for database systems that support grouping and
aggregation efficiently.

For space reasons we refer to [18] for extensions of our algorithms to data
models working on bags or sequences.

Acknowledgements

We would like to thank Carl-Christian Kanne and Simone Seeger for their com-
ments on the manuscript.

References

1. D. Bitton and D. J. DeWitt. Duplicate record elimination in large data files. ACM
TODS, 8(2):255–265, June 1983.

2. D. Chatziantoniou, M. Akinde, T. Johnson, and S. Kim. The MD-Join: An Op-
erator for Complex OLAP. In Proc. ICDE, pages 524–533, 2001.

3. S. Cluet and G. Moerkotte. Efficient evaluation of aggregates on bulk types. Proc.
of 5-th DBPL, 1995.

4. S. Cluet and G. Moerkotte. Nested queries in object bases. Technical Report
RWTH-95-06, GemoReport64, RWTH Aachen/INRIA, 1995.

5. T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

6. Jochen Van den Bercken, Martin Schneider, and Bernhard Seeger. Plug&join: An
easy-to-use generic algorithm for efficiently processing equi and non-equi joins. In
EDBT ’00, pages 495–509, 2000.

176 Norman May and Guido Moerkotte

7. D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood.
Implementation techniques for main memory database systems. In Proc. of the
ACM SIGMOD, pages 1–8, June 1984.

8. D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An evaluation of non-equijoin
algorithms. In Proc. VLDB, pages 443–452, 1991.

9. G. Graefe. Query evaluation techniques for large databases. ACM Computing Sur-
veys, 25(2):73–170, June 1993.

10. G. Graefe. Sort-merge-join: An idea whose time has(h) passed? In Proc. ICDE,
pages 406–417, 1994.

11. G. Graefe. Executing nested queries. In BTW, pages 58–77, 2003.
12. G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash teams in Microsoft

SQL server. In Proc. VLDB, pages 86–97, 1998.
13. G. Graefe, A. Linville, and L. D. Shapiro. Sort vs. hash revisited. IEEE TKDE,

6(6):934–944, December 1994.
14. L. M. Haas, M. J. Carey, M. Livny, and A. Shukla. Seeking the truth about ad

hoc join costs. VLDB Journal, 6(3):241–256, May 1997.
15. S. Helmer, T. Neumann, and G. Moerkotte. Early grouping gets the skew. Tech-

nical Report TR-02-009, University of Mannheim, 2002.
16. S. Helmer, T. Neumann, and G. Moerkotte. A robust scheme for multilevel ex-

tendible hashing. Proc. 18th ISCIS, pages 218–225, 2003.
17. N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers in an ordered

context. Proc. ICDE, pages 239–250, 2004.
18. N. May, S. Helmer, and G. Moerkotte. Main memory implementations for binary

grouping. Technical report, University of Mannheim, 2005. available at:
http://pi3.informatik.uni-mannheim.de/publikationen.html.

19. D. E. Simmen, E. J. Shekita, and T. Malkemus. Fundamental techniques for order
optimization. SIGMOD Record, 25(2):57–67, 1996.

20. H. J. Steenhagen, P. M. G. Apers, H. M. Blanken, and R. A. de By. From nested-
loop to join queries in OODB. Proc. VLDB, pages 618–629, 1994.

21. T. Westmann and G. Moerkotte. Variations on grouping and aggregation. Tech-
nical report, University of Mannheim, 1999.

Logic Wrappers and XSLT Transformations
for Tuples Extraction from HTML

Costin Bădică1 and Amelia Bădică2

1 University of Craiova, Software Engineering Department
Bvd.Decebal 107, Craiova, RO-200440, Romania

badica costin@software.ucv.ro
2 University of Craiova, Business Information Systems Department

A.I.Cuza 13, Craiova, RO-200585, Romania
ameliabd@yahoo.com

Abstract. Recently it was shown that existing general-purpose induc-
tive logic programming systems are useful for learning wrappers (known
as L-wrappers) to extract data from HTML documents. Here we propose
a formalization of L-wrappers and their patterns, including their syntax
and semantics and related properties and operations. A mapping of the
patterns to a subset of XSLT that has a formal semantics is outlined and
demonstrated by an example. The mapping actually shows how the the-
ory can be applied to obtain efficient wrappers for information extraction
from HTML.

1 Introduction

Many Web resources can be abstracted as providing relational information as
sets of tuples, including: search engines result pages, product catalogues, news
sites, product information sheets, a.o. Recently, we have experimentally shown
that general-purpose inductive logic programming (ILP hereafter) systems might
be useful for learning logic wrappers (i.e. L-wrappers) to extract tuples from
Web pages written in HTML ([4–6]). Our wrappers use patterns defined as logic
rules. Technically, these rules are acyclic conjunctive queries over trees ([12]).
Their patterns are matched against XHTML information sources to extract the
relevant information. Here we complement this work by giving a formalization
of L-wrappers and their patterns using directed graphs. Then we show how L-
wrappers can be efficiently implemented using XSLT ([9]) and corresponding
transformation engines.

Web pages and XML can be regarded as semi-structured data modeled as
labeled ordered trees ([1]). In this paper we study the syntax, semantics, and
properties of patterns used in L-wrappers, in the more general context of infor-
mation extraction from semi-structured data. This study serves at least three
purposes: i) as a concise specification of L-wrappers; this enables a theoretical
investigation of their properties and operations and allows comparisons with re-
lated works; ii) as a convenient way for mapping L-wrappers to XSLT for efficient
processing using available XSLT processing engines; the mathematically sound

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 177–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

178 Costin Bădică and Amelia Bădică

approach enables also the study of the correctness of the implementation of L-
wrappers using XSLT (however this issue is not addressed in this paper; only an
informal argument is given); iii) furthermore, the experimental work reported
in [6] revealed some scalability problems of applying ILP to learn L-wrappers of
arity greater than three (i.e. tuples containing at least three attributes). There,
this was explained by the large number of negative examples required, that grows
exponentially with the tuple arity. Here we show that this problem can be tack-
led as follows: in order to learn a wrapper to extract tuples of arity k ≥ 3, we
suggest learning k − 1 wrappers to extract tuples of arity 2 and then use the
pattern merging operator to merge them, rather than learning the wrapper in
one shot. This approach is demonstrated using an example.

The work described in this paper is part of an ongoing research project that
investigates the application of general-purpose ILP systems (like FOIL [18] or
Aleph [2]), logic representations of wrappers and XML technologies (including
the XSLT transformation language [9]) to information extraction from the Web.

The paper is structured as follows. First, we present the syntax and semantics
of extraction patterns. Syntax is defined using directed graphs, while semantics
and sets of extracted tuples are defined using a model-theoretic approach. Then,
we discuss pattern properties – subsumption, equivalence, and operations – sim-
plification and merging. We follow with a case study inspired by our previous
work on using ILP to learn L-wrappers for HTML. In the case study we ana-
lyze the example L-wrappers from paper [6]. We discuss their combination using
pattern merging and describe their mapping to XSLT. An explanation of why
this mapping works is also given. Note that the application of ILP, logic rep-
resentations and XML technologies to information extraction from the Web is
not an entirely new field; several approaches and tool descriptions have already
been proposed and published ([3, 8, 11, 13, 14, 16, 19, 20]; see also the survey in
[15]). Therefore, before concluding, we follow with a summary of these relevant
works, briefly comparing them with our own work. The last section of the paper
contains some concluding remarks and points to future research directions.

2 Patterns. Syntax and Semantics

We model semi-structured data as labeled ordered trees. A wrapper takes a la-
beled ordered tree and returns a subset of tuples of extracted nodes. An extracted
node can be viewed as a subtree rooted at that node. Within this framework,
a pattern can be interpreted as a conjunctive query over labeled ordered trees,
yielding a set of tree node tuples as answer. The node labels of a labeled ordered
tree correspond to attributes in semi-structured databases or tags in tagged
texts. Let Σ be the set of all node labels of a labeled ordered tree.

For our purposes, it is convenient to abstract labeled ordered trees as sets
of nodes on which certain relations and functions are defined. Note that in this
paper we are using some basic graph terminology as introduced in [10].

Definition 1. (Labeled ordered tree) A labeled ordered tree is a tuple t =
〈T, E, r, l, c, n〉 such that:

Logic Wrappers and XSLT Transformations for Tuples Extraction 179

i) (T, E, r) is a rooted tree with root r ∈ T . Here, T is the set of tree nodes and
E is the set of tree edges ([10]).

ii) l : T → Σ is a node labeling function.
iii) c ⊆ T × T is the parent-child relation between tree nodes. c = {(v, u)| node

u is the parent of node v}.
iv) n ⊆ T × T is the next-sibling linear ordering relation defined on the set of

children of a node. For each node v ∈ T , its k children are ordered from left
to right, i.e. (vi, vi+1) ∈ n for all 1 ≤ i < k.

A pattern is a labeled directed graph. Arc labels denote conditions that
specify the tree delimiters of the extracted information, according to the parent-
child and next-sibling relationships (eg. is there a parent node ?, is there a left
sibling ?, a.o). Vertex labels specify conditions on nodes (eg. is the tag label td
?, is it the first child ?, a.o).

Conditions specified by arc and node labels must be satisfied by the extracted
nodes and/or their delimiters. A subset of graph vertices is used for selecting
the items for extraction.

We adopt a standard relational model. Associated to each information source
is a set of distinct attributes. Let A be the set of attribute names.

Definition 2. (Syntax) An (extraction) pattern is a tuple p = 〈V, A, U, D, μ, λa,
λc〉 such that:

i) (V, A) is a directed graph. V is the finite set of vertices and A ⊆ V × V is
the set of directed edges or arcs.

ii) λa : A → {′c′,′ n′} is the labeling function for arcs. The meanings of ′c′ and
′n′ are: ′c′ label denotes the parent-child relation and ′n′ label denotes the
next-sibling relation.

iii) λc : V → C is the labeling function for vertices. It labels each vertex with
a condition from the set C = {∅, {′f ′}, {′l′}, {σ}, {′f ′,′ l′}, {′f ′, σ}, {′l′, σ},
{′f ′,′ l′, σ}} of conditions, where σ is a label in the set Σ of symbols. In this
context, the meanings of ′f ′, ′l′ and σ are: ′f ′ label requires the corresponding
vertex to indicate a first child; ′l′ label requires the corresponding vertex to
indicate a last child; σ label requires the corresponding vertex to indicate a
node labeled with σ.

iv) U = {u1, u2, . . . , uk} ⊆ V is the set of pattern extraction vertices such that
for all 1 ≤ i ≤ k, the number of incoming arcs to ui that are labeled with ′c′

is 0. k is called the pattern arity.
v) D ⊆ A is the set of attribute names defining the relation scheme of the

information source. μ : D → U is a one-to-one function that assigns a
pattern extraction vertex to each attribute name.

Note that according to point iv) of definition 2, an extraction pattern does
not state any condition about the descendants of an extracted node; i.e. it looks
only at its siblings and its ancestors. This is not restrictive in the context of
patterns for information extraction from HTML; see for example the rules in
Elog−, as described in [13].

180 Costin Bădică and Amelia Bădică

In what follows, we provide a model-theoretic semantics for our patterns. In
this setting, a labeled ordered tree is an interpretation domain for the patterns.
The semantics is defined by an interpretation function assigning tree nodes to
pattern vertices.

Definition 3. (Interpretation) Let p = 〈V, A, U, D, μ, λa, λc〉 be a pattern and
let t = 〈T, E, r, l, c, n〉 be a labeled ordered tree. A function I : V → T assigning
tree nodes to pattern vertices is called interpretation.

Intuitively, patterns are matched against parts of a target labeled ordered
tree. A successful matching asks for the labels of pattern vertices and arcs to be
consistent with the corresponding relations and functions over tree nodes.

Definition 4. (Semantics) Let p = 〈V, A, U, D, μ, λa, λc〉 be a pattern, let t =
〈T, E, r, l, c, n〉 be a labeled ordered tree and let I : V → T be an interpretation
function. Then I and t are consistent with p, written as I, t |= p, if and only if:

i) If (v, w) ∈ A and λa((v, w)) = ′n′ then (I(v), I(w)) ∈ n.
ii) If (v, w) ∈ A and λa((v, w)) = ′c′ then (I(v), I(w)) ∈ c.
iii) If v ∈ V and ′f ′ ∈ λc(v) then for all w ∈ V , (I(w), I(v)) �∈ n.
iv) If v ∈ V and ′l′ ∈ λc(v) then for all w ∈ V , (I(v), I(w)) �∈ n.
v) If v ∈ V and σ ∈ Σ and σ ∈ λc(v) then l(I(v)) = σ.

A labeled ordered tree for which an interpretation function exists is called a model
of p.

Our definition for patterns is quite general by allowing to build patterns for
which no consistent labeled ordered tree and interpretation exist. Such patterns
are called inconsistent. A pattern that is not inconsistent is called consistent.
The following proposition states necessary conditions for pattern consistency.

Proposition 1. (Necessary conditions for consistent patterns) Let p = 〈V, A, U,
D, μ, λa, λc〉 be a consistent pattern. Then:

i) The graph of p is a DAG.
ii) For any two disjoint paths between two distinct vertices of p, one has length

1 and its single arc is labeled with ′c′ and the other has length at least 2 and
its arcs are all labeled with ′n′, except the last arc that is labeled with ′c′.

iii) For all v ∈ V if ′f ′ ∈ λc(v) then for all w ∈ V , (w, v) �∈ A or c((w, v)) =′ c′

and if ′l′ ∈ λc(v) then for all w ∈ V , (v, w) �∈ A or c((v, w)) =′ c′ .

The proof of this proposition is quite straightforward. The idea is that a
consistent pattern has at least one model and this model is a labeled ordered
tree. Then, the claims of the proposition follow from the properties of ordered
trees seen as directed graphs ([10]). Note that in what follows we are considering
only consistent patterns.

The result of applying a pattern to a semi-structured information source
is a set of extracted tuples. An extracted tuple is modeled as a function from
attribute names to tree nodes, as in standard relational data modeling.

Logic Wrappers and XSLT Transformations for Tuples Extraction 181

Definition 5. (Extracted tuple) Let p = 〈V, A, U, D, μ, λa, λc〉 be a pattern and
let t = 〈T, E, r, l, c, n〉 be a labeled ordered tree that models a semi-structured
information source. A tuple extracted by p from t is a function I ◦ μ : D → T 1,
where I is an interpretation function such that I, t |= p.

Note that if p is a pattern and t is a tree then p is able to extract more than
one tuple from t. Let Ans(p, t) be the set of all tuples extracted by p from t.

3 Pattern Properties and Operations

In this section we study pattern properties – subsumption, equivalence and op-
erations – simplification and merging.

Subsumption and equivalence enable the study of pattern simplification, i.e.
the process of removing arcs in the pattern directed graph without changing the
pattern semantics. Merging is useful in practice for constructing patterns of a
higher arity from two or more patterns of smaller arities (see the example in
section 4).

3.1 Pattern Subsumption and Equivalence

Pattern subsumption refers to checking when the set of tuples extracted by a
pattern is subsumed by the set of tuples extracted by a second (possibly simpler)
pattern. Two patterns are equivalent when they subsume each other.

Definition 6. (Pattern subsumption and equivalence) Let p1 and p2 be two pat-
terns of arity k. p1 subsumes p2, written as p1 � p2, if and only if for all trees
t, Ans(p1, t) ⊆ Ans(p2, t). If the two patterns mutually subsume each other, i.e.
p1 � p2 and p2 � p1, then they are called equivalent, written as p1 � p2.

In practice, given a pattern p, we are interested in simplifying p to yield a
new pattern p′ equivalent to p.

Proposition 2. (Pattern simplification) Let p = 〈V, A, U, D, μ, λa, λc〉 be a pat-
tern and let u, v, w ∈ V be three distinct vertices of p such that (u, w) ∈ A,
λa((u, w)) = ′c′, (u, v) ∈ A, and λa((u, v)) =′ n′. Let p′ = 〈V, A′, U, D, μ, λ′

a, λc〉
be a pattern defined as:

i) A′ = (A \ {(u, w)}) ∪ {(v, w)}.
ii) If x ∈ A \ {(u, w)} then λ′

a(x) = λa(x), and λ′
a((v, w)) = ′c′.

Then p′ � p.

Basically, this proposition says that shifting one position right an arc labeled
with ′c′ in a pattern produces an equivalent pattern. The result follows from
the property that for all nodes u, v, w of an ordered tree such that v is the next
sibling of u then w is the parent of u if and only if w is the parent of v. Note
1 The ◦ operator denotes function composition.

182 Costin Bădică and Amelia Bădică

that if (v, w) ∈ A then the consistency of p enforces λa((v, w)) = ′c′ and this
results in no new arc being added to p′. In this case p gets simplified to p′ by
deleting arc (u, w).

A pattern p can be simplified to an equivalent pattern p′ called normal form.

Definition 7. (Pattern normal form) A pattern p is said to be in normal form
if the out-degree of every pattern vertex is at most 1.

A pattern can be brought to normal form by repeatedly applying the oper-
ation described in proposition 2. The existence of a normal form is captured by
the following proposition.

Proposition 3. (Existence of normal form) For every pattern p there exists a
pattern p′ in normal form such that p′ � p.

Note that the application of pattern simplification operation from proposition
2 has the result of decrementing by 1 the number of pattern vertices with out-
degree equal to 2. Because the number of pattern vertices is finite and the out-
degree of each vertex is at most 2, it follows that after a finite number of steps
the resulted pattern will be brought to normal form.

3.2 Pattern Merging

Merging looks at building more complex patterns by combining simpler patterns.
In practice we found convenient to learn a set of simpler patterns that share
attributes and then merge them into more complex patterns, that are capable
to extract tuples of higher arity.

Merging two patterns first assumes performing a pairing of their pattern
vertices. Two vertices are paired is they are meant to match identical nodes of
the target document. Paired vertices will be fusioned in the resulting pattern.

Definition 8. (Pattern vertex pairings) Let pi = 〈Vi, Ai, Ui, Di, μi, λai , λci〉, i =
1, 2, be two patterns such that V1 ∩ V2 = ∅. The set of vertex pairings of p1 and
p2 is the maximal set P ⊆ V1 × V2 such that:

i) For all d ∈ D1 ∩ D2, (μ1(d), μ2(d)) ∈ P .
ii) If (u1, u2) ∈ P , (u1, v1) ∈ A1, (u2, v2) ∈ A2, and λa1((u1, v1)) = λa2((u2,

v2)) =′ n′ then (v1, v2) ∈ P .
iii) If (u1, u2) ∈ P , w0 = u1, w1, . . . , wn = v1 is a path in (V1, A1) such that

λa1((wi, wi+1)) = ′n′ for all 1 ≤ i < n − 1, λa1((wn−1, wn)) = ′c′, and
w′

0 = u2, w
′
1, . . . , w

′
m = v2 is a path in (V2, A2) such that λa2((w′

i, w
′
i+1)) =

′n′ for all 1 ≤ i < m − 1, λa2((w′
m−1, w

′
m)) = ′c′ then (v1, v2) ∈ P .

iv) If (u1, u2) ∈ P , (v1, u1) ∈ A1, (v2, u2) ∈ A2, and λa1((u1, v1)) = λa2((u2,
v2)) =′ n′ then (v1, v2) ∈ P .

v) If (u1, u2) ∈ P , (v1, u1) ∈ A1, (v2, u2) ∈ A2, λa1((u1, v1)) = λa2((u2, v2)) =
′c′, and (′f ′ ∈ λc1(v1)∩ λc2(v2) or ′l′ ∈ λc1(v1)∩λc2(v2)), then (v1, v2) ∈ P .

Logic Wrappers and XSLT Transformations for Tuples Extraction 183

Defining vertex pairings according to definition 8 deserves some explanations.
Point i) states that if two extraction vertices denote identical attributes then they
must be paired. Points ii), iii), iv) and v) identify additional pairings based on
properties of ordered trees. Points ii) and iii) state that next-siblings or parents
of paired vertices must be paired as well. Point iv) states that previous siblings
of paired vertices must be paired as well. Point v) state that first children and
respectively last children of paired vertices must be paired as well.

For all pairings (u, v), the paired vertices u and v are fusioned into a single
vertex that is labeled with the union of the conditions of the original vertices,
assuming that these conditions are not mutually inconsistent.

First, we must define the fusioning of two vertices of a directed graph.

Definition 9. (Vertex fusioning) Let G = (V, A) be a directed graph and let
u, v ∈ V be two vertices such that u �= v, (u, v) �∈ A, and (v, u) �∈ A. The graph
G′ = (V ′, A′) obtained by fusioning vertex u with vertex v is defined as:

i) V ′ = V \ {v};
ii) A′ is obtained by replacing each arc (x, v) ∈ A with (x, u) and each arc

(v, x) ∈ A with (u, x).

Pattern merging involves the repeated fusioning of vertices of the pattern
vertex pairings. For each paired vertices, their conditions must be checked for
mutual consistency.

Definition 10. (Pattern merging) Let pi = 〈Vi, Ai, Ui, Di, μi, λai , λci〉, i = 1, 2,
be two patterns such that V1 ∩ V2 = ∅ and let P be the set of vertex pairings
of p1 and p2. If for all (u, v) ∈ P and for all σ1, σ2 ∈ Σ, if σ1 ∈ λc1(u) and
σ2 ∈ λc2(v) then σ1 = σ2, then the pattern p = 〈V, A, U, D, μ, λa, λc〉 resulted
from merging patterns p1 and p2 is defined as follows:

i) (V, A) is obtained by fusioning u with v for all (u, v) ∈ P in graph (V1 ∪
V2, A1 ∪ A2).

ii) U = U1 ∪U2. D = D1 ∪D2. If d ∈ D1 then μ(d) = μ1(d), else μ(d) = μ2(d).
iii) For all (u, v) ∈ V if u, v ∈ V1 then λa((u, v)) = λa1((u, v)) else if u, v ∈

V2 then λa((u, v)) = λa2((u, v)) else if u ∈ V1, v ∈ V2 and (u, u′) ∈ P
then λa((u, v)) = λa2((u′, v)) else if u ∈ V2, v ∈ V1 and (v, v′) ∈ P then
λa((u, v)) = λa2((u, v′)).

iv) If a vertex in x ∈ V resulted from fusioning u with v then λc(x) = λc1(u) ∪
λc2(v), else if x ∈ V1 then λc(x) = λc1(x), else λc(x) = λc2(x).

Essentially this definition says that pattern merging involves performing a
pattern vertex pairing (point i)), then defining of the attributes attached to
pattern extraction vertices (point ii)) and of the labels attached to vertices (point
iv)) and arcs (point iii)) in the directed graph of the resulting pattern.

An example of pattern merging is given in the next section of the paper.
Despite these somehow cumbersome but rigorous definitions, pattern merging
is a quite simple operation that can be grasped more easily using a graphical
representation of patterns (see figure 2).

184 Costin Bădică and Amelia Bădică

The next proposition states that the set of tuples extracted by a pattern
resulted from merging two or more patterns is equal to the relational natural
join of the sets of tuples extracted by the original patterns.

Proposition 4. (Tuples extracted by a pattern resulted from merging) Let p1

and p2 be two patterns and let p be their merging. For all labeled ordered trees t,
Ans(p, t) = Ans(p1, t) �� Ans(p2, t). �� is the relational natural join operator.

This result follows by observing that a pattern can be mapped to a con-
junctive query over the signature (child, next, first, last, (tagσ)σ∈Σ). Relations
child, next, first, last and tagσ are defined as follows (here N is the set of tree
nodes):

i) child ⊆ N ×N , (child(P, C) = true) ⇔ (P is the parent of C).
ii) next ⊆ N ×N , (next(L, N) = true) ⇔ (L is the left sibling of N).
iii) first ⊆ N , (first(X) = true) ⇔ (X is the first child of its parent node).
iv) last ⊆ N , (last(X) = true) ⇔ (X is the last child of its parent node).
v) tagσ ⊆ N , (tag(N) = true) ⇔ (σ is the tag of node N).
A pattern vertex is mapped to a logic variable. The query defines a pred-

icate with variables derived from the pattern extraction vertices, one variable
per pattern vertex. Merging involves renaming with identical names the vari-
ables corresponding to paired pattern vertices and then taking the conjunction
of queries corresponding to merged patterns. Now, by simple relational manip-
ulation, it is easy to see that the result stated by proposition 4 holds.

4 An Example

Here we show how the theory developed in the previous sections can be applied
to obtain practical wrappers for HTML, implemented as XSLT stylesheets.

First, using the observation stated at the end of the previous section, we
redefine L-wrappers ([5, 6]) as sets of patterns. Second, we consider the two
single-clause wrappers from [6] and describe them as single-pattern wrappers.
Third, we consider the pattern resulted from their merging. Finally, we map the
resulting wrapper to XSLT and give arguments for its correctness. Note that in
this mapping we are using a subset of XSLT that has a formal semantics ([7]).

4.1 L-Wrappers as Sets of Patterns

L-wrappers (introduced in [5, 6]) can be redefined using patterns as follows.

Definition 11. (L-wrapper) An L-wrapper of arity k is a set of n ≥ 1 patterns
W = {pi|pi = 〈Vi, Ai, Ui, D, μi, λai , λci〉, pi has arity k, for all 1 ≤ i ≤ n}. The
set of tuples extracted by W from a labeled ordered tree t is the union of the sets
of tuples extracted by each pattern pi, 1 ≤ i ≤ n, i.e. Ans(W, t) = ∪n

i=1Ans(pi, t).

In [6] we considered learning L-wrappers for extracting printer information
from Hewlett Packard’s Web site, using general-purpose ILP. There, we also pro-
posed a generic process for information extraction from the Web that consists of

Logic Wrappers and XSLT Transformations for Tuples Extraction 185

the following stages: page collection, pre-processing, manual information extrac-
tion, conversion to the input format of the learning program, learning, wrapper
compilation, wrapper execution. In this section we are focusing on the last two
stages of this process: wrapping compilation, i.e. the mapping of L-wrappers to
XSLT and wrapper execution.

The printer information is represented in multi-section two column HTML
tables (see figure 1). Each row contains a pair (feature name, feature value).
Consecutive rows represent related features that are grouped into feature classes.
For example, there is a row with the feature name ‘Print technology’ and the
feature value ‘HP Thermal Inkjet’. This row has the feature class ‘Print qual-
ity/technology’. So actually this table contains triples (feature class, feature
name, feature value). Some triples may have identical feature classes.

Fig. 1. An XHTML document fragment and its graphic view

In [6] we presented two single-clause L-wrappers for this example that were
learnt using FOIL program ([18]): i) for pairs (feature class, feature name); ii)
for pairs (feature name, feature value), together with figures of the precision
and recall performance measures. The wrappers are (FC = feature class, FN =
feature name, FV = feature value):

extract(FC, FN) ← child(C, FC) ∧ child(D, FN) ∧ tag(C, span) ∧ child(E, C)∧
child(F, E) ∧ next(F, G) ∧ child(H, G) ∧ last(E) ∧ child(I, D) ∧ child(J, I)∧
child(K, J) ∧ child(L, K) ∧ next(L, M) ∧ child(N, M) ∧ child(H, N).

extract(FN, FV) ← tag(FN, text) ∧ tag(FV, text) ∧ child(C, FN) ∧ child(D, FV)∧
child(E, C) ∧ child(F, E) ∧ child(G, D) ∧ child(H, G) ∧ child(I, F)∧
child(J, I) ∧ next(J, K) ∧ first(J) ∧ child(K, L) ∧ child(L, H).

Figure 2 illustrates the two patterns corresponding to the clauses shown
above and the pattern resulted from their merging. One can easily notice that
these patterns are already in normal form.

The experimental analysis performed in [6] also revealed some difficulties of
learning triples (feature class, feature name, feature value) in a straightforward
way. The problems were caused by the exponential growth of the number of neg-
ative examples, with the tuples arity. The idea of pattern merging presented here

186 Costin Bădică and Amelia Bădică

FC

C

E

F G

H

M

N

I

J

K

L

FN

D

{span}

{‘l’}

�

�

�

�

�

�

�

�

�

�

�

�

‘c’

‘c’

‘c’

‘c’

‘n’

‘c’

‘c

‘n’

‘c’

‘c’

‘c’

‘c’

‘c’

K’J’

{text}

{‘f’} �
‘n’

E’

F’

I’

FN’

C’

�

�

�

�

‘c’

‘c’

‘c’

‘c’

‘c’

G’

H’

L’

FV’

D’

�

�

�

�

‘c’

‘c’

‘c’

‘c’

‘c’

{text}

FC

C

E

F G

H

N

L,J’

{span}

{‘l’}

�

�

�

�

�

�

�

�

�

�

‘c’

‘c’

‘c’

‘c’

‘n’

‘c’

‘c

‘n’

‘c’

‘c’

‘c’

‘c’

‘c’

{‘f’}

{text}

G’

H’

L’

FV’

D’

�

�

�

�

‘c’

‘c’

‘c’

‘c’

‘c’

{text}

K,I’

J,F’

I,E’

D,C’

M,K’

FN,FN’

D1 = {Class, Name} D2 = {Name, V alue} D = {Class, Name, V alue}
U1 = {FC, FN} U2 = {FN ′, FV ′} U = {FC, (FN, FN ′), FV ′}
μ1(Class) = FC μ2(Name) = FN ′ μ(Class) = FC

μ1(Name) = FN μ2(V alue) = FV ′ μ(Name) = (FN.FN ′)

μ(V alue) = FV ′

Pattern p1 Pattern p2 p1 merged with p2

Fig. 2. Patterns and pattern merging

is an approach of learning extraction patterns of a higher arity that overcomes
these difficulties, and thus supporting the scalability of our approach.

4.2 Mapping Wrappers to XSLT

Paper [7] describes a subset of XSLT, called XSLT0, that has a Plotkin-style
formal semantics. The reader is invited to consult reference [7], for details on
XSLT0, its pseudocode notation and the formal semantics.

The XSLT0 description of the single-pattern wrapper resulted from merging
patterns p1 and p2 from figure 2 is shown in table 12. The XSLT wrapper is shown
in the appendix. XPath expressions xp1, xp2 and xp3 are defined as follows:

xp1 = //*/*/preceding-sibling::*[1]/*[last()]/span/node()
xp2 = parent::*/parent::*/parent::*/following-sibling::*[1]/parent::*/*/*/

preceding-sibling::*[1][last()]/*/*/*/*/text()
xp3 = parent::*/parent::*/parent::*/parent::*/parent::*/following-sibling::*[1]/

//*/*/text()

The idea is simple: referring to figure 2, we start from the document root,
labeled with html, then match node H and move downwards to FC, then move
back upwards from FC to H and downwards to (FN, FN ′), and finally move
back upwards from (FN, FN ′) to (M, K ′) and downwards from (M, K ′) to FV ′.
The wrapper actually extracts the node contents rather than the nodes them-
selves, using the content(.) expression. The extracted information is passed be-
tween templates in template variables and parameters varClass and varName.
2 Note that our version of XSLT0 is slightly different from the one presented in [7].

Logic Wrappers and XSLT Transformations for Tuples Extraction 187

Table 1. Description of the sample wrapper in XSLT0 pseudocode

template start(html)
return

result(selclass(xp1))
end

template selclass(*)
vardef

varClass := content(.)
return

selname(xp2,varClass)
end

template selname(*,varClass)
vardef

varName := content(.)
return

display(xp3,varClass,varName)
end

template display(*,varClass,varName)
vardef

varValue := content(.)
return

triple[class→ varClass;
name→ varName;
value→ varValue]

end

Note that this technique works for the general case of mapping a pattern to
XSLT. As the pattern is a tree, it is always possible to move from a pattern
extraction vertex to another via their common descendant in the pattern graph.

Below we give an informal argument of why this transformation works.
The XSLT0 program contains four templates: i) the constructing templates

t1 = start(html), t4 = display(∗, varClass, varName), and ii) the selecting
templates t2 = selclass(∗), t3 = selname(∗, varClass).

Initially, t1 is applied. xp1 selects the nodes that match the feature class.
Then, for each feature class, t2 is applied. xp2 selects the feature names that are
members of a feature class. Then, for each pair (feature class, feature name), t3
is applied. xp3 selects the feature values that are related to a pair (feature class,
feature name). Then, for each triple (feature class, feature name, feature value),
t4 is applied. It constructs a triple and adds it to the output XML document.

For wrapper execution we can use any of the available XSLT transformation
engines. In our experiments we have used Oxygen XML editor ([17], a tool that
incorporates some of these engines. Figure 3 illustrates our wrappers in action.

5 Related Work

With the rapid expansion of the Internet and the Web, the field of information
extraction from HTML attracted a lot of researchers during the last decade.
Clearly, it is impossible to mention all of their work here. However, at least we
can try to classify these works along several axes and select some representatives
for discussion.

First, we are interested in research on information extraction from HTML
using logic representations of tree (rather than string) wrappers that are gen-
erated automatically using techniques inspired by ILP. Second, both theoretical
and experimental works are considered.

[11] is one of the first papers describing a “relational learning program” called
SRV. It uses a FOIL-like algorithm for learning first order information extraction
rules from a text document represented as a sequence of lexical tokens. Rule

188 Costin Bădică and Amelia Bădică

Fig. 3. Wrapper execution inside Oxygen XML editor

bodies check various token features like: length, position in the text fragment, if
they are numeric or capitalized, a.o. SRV has been adapted to learn information
extraction rules from HTML. For this purpose new token features have been
added to check the HTML context in which a token occurs. The most important
similarity between SRV and our approach is the use of relational learning and
a FOIL-like algorithm. The difference is that our approach has been explicitly
devised to cope with tree structured documents, rather than string documents.

In [8] is described a generalization of the notion of string delimiters developed
for information extraction from string documents ([14]) to subtree delimiters
for information extraction from tree documents. The paper describes a special
purpose learner that constructs a structure called candidate index based on trie
data structures, which is very different from FOIL’s approach. Note however,
that the tree leaf delimiters described in that paper are very similar to our
information extraction rules. Moreover, the representation of reverse paths using
the symbols Up(↑), Left(←) and Right(→) can be easily simulated by our rules
using the relations child and next.

In [20] is proposed a technique for generating XSLT-patterns from positive
examples via a GUI tool and using an ILP-like algorithm. The result is a NE-
agent (i.e. name extraction agent) that is capable of extracting individual items.
A TE-agent (i.e. term extraction agent) then uses the items extracted by NE-
agents and global constraints to fill-in template slots (tuple elements according
to our terminology). The differences in our work are: XSLT wrappers are learnt
indirectly via L-wrappers; our wrappers are capable of extracting tuples in a
straightforward way, therefore TE-agents are not needed.

Logic Wrappers and XSLT Transformations for Tuples Extraction 189

In [3] is described Elog, a logic Web extraction language. Elog is employed
by a visual wrapper generator tool called Lixto. Elog uses a tree representation
of HTML documents (similar to our work) and defines Datalog-like rules with
patterns for information extraction. Elog is very versatile by allowing the refine-
ment of the extracted information with the help of regular expressions and the
integration between wrapping and crawling via links in Web pages. Elog uses a
dedicated extraction engine that is incorporated into Lixto tool.

In [19] is introduced a special wrapper language for Web pages called token-
templates. Token-templates are constructed from tokens and token-patterns. A
Web document is represented as a list of tokens. A token is a feature structure
with exactly one feature having name type. Feature values maybe either con-
stants or variables. Token-patterns use operators from the language of regular
expressions. The operators are applied to tokens to extract relevant information.
The only similarity between our approach and this approach is the use of logic
programming to represent wrappers.

In [16] is described the DEByE (i.e. Data Extraction By Example) envi-
ronment for Web data management. DEByE contains a tool that is capable to
extract information from Web pages based on a set of examples provided by
the user via a GUI. The novelty of DEByE is the possibility to structure the
extracted data based on the user perception of the structure present in the Web
pages. This structure is described at example collection stage by means of a
GUI metaphor called nested tables. DEByE addresses also other issues needed
in Web data management like automatic examples generation and wrapper man-
agement. Our L-wrappers are also capable of handling hierarchical information.
However, in our approach, the hierarchical structure of information is lost by
flattening during extraction (see the printer example where tuples representing
features of the same class share the feature class attribute).

As concerning theoretical work, [13] is one of the first papers that analyzes
seriously the expressivity required by tree languages for Web information extrac-
tion and its practical implications. Combined complexity and expressivity results
of conjunctive queries over trees, that also apply to information extraction, are
reported in [12].

Finally, in [15] is contained a survey of Web data extraction tools. That
paper contains a section on wrapper languages including HTML-aware tools
(tree wrappers) and a section on wrapper induction tools.

6 Concluding Remarks

In this paper we studied a class of patterns for information extraction from semi-
structured data inspired by logic. This complements our experimental work re-
ported in [4–6]. There, we described how to apply ILP to learn L-wrappers for
information extraction from the Web. Here the main focus were properties and
operations of patterns used by L-wrappers and L-wrapper implementation using
XSLT for information extraction from HTML. The results of this work provide a
theoretical basis of L-wrappers and their patterns linking our work with related

190 Costin Bădică and Amelia Bădică

works in this field. They also show how the combination of general-purpose ILP,
L-wrappers and XSLT transformations can be successfully applied to extract
information from the Web. We plan to implement this in an information extrac-
tion tool. As future theoretical work, we would like to give a formal proof of the
correctness of the mapping of L-wrappers to XSLT. As future experimental work
we plan to investigate the generality of our approach by applying it on Web sites
in other application areas.

References

1. Abiteoul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to
Semistructured data and XML, Morgan Kauffman Publishers, (2000).

2. Aleph. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

aleph.html.
3. Baumgartner, R., Flesca, S., Gottlob, G.: The Elog Web Extraction Language.

In: Nieuwenhuis, R., Voronkov, A. (eds.): Proceedings of LPAR’2001, LNAI 2250,
Springer Verlag, (2001) 548–560.

4. Bădică, C., Bădică, A.: Rule Learning for Feature Values Extraction from HTML
Product Information Sheets. In: Boley, H., Antoniou, G. (eds): Proc. RuleML’04,
Hiroshima, Japan. LNCS 3323 Springer-Verlag (2004) 37–48.

5. Bădică, C., Popescu, E., Bădică, A.: Learning Logic Wrappers for Information Ex-
traction from the Web. In: Papazoglou M., Yamazaki, K. (eds.) Proc. SAINT’2005
Workshops. Computer Intelligence for Exabyte Scale Data Explosion, Trento, Italy.
IEEE Computer Society Press (2005) 336–339.

6. Bădică, C., Bădică, A., Popescu, E.: Tuples Extraction from HTML Using Logic
Wrappers and Inductive Logic Programming. In: Szczepaniak, P.S., Kacprzyk, J.,
Niewiadomski, A. (eds.): Proc.AWIC’05, Lodz, Poland. LNAI 3528 Springer-Verlag
(2005) 44–50.

7. Bex, G.J., Maneth, S., Neven, F.: A formal model for an expressive fragment of
XSLT. Information Systems, No.27, Elsevier Science (2002) 21–39.

8. Chidlovskii, B.: Information Extraction from Tree Documents by Learning Subtree
Delimiters. In: Proc. IJCAI-03 Workshop on Information Integration on the Web
(IIWeb-03), Acapulco, Mexico (2003) 3–8.

9. Clark, J.: XSLT Transformation (XSLT) Version 1.0, W3C Recommendation, 16
November 1999, http://www.w3.org/TR/xslt (1999).

10. Cormen, T.H., Leiserson, C.E., Rivest, R.R.: Introduction to Algorithms. MIT Press
(1990).

11. Freitag, D.: Information extraction from HTML: application of a general machine
learning approach. In: Proceedings of AAAI’98, (1998) 517–523.

12. Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive Queries over Trees. In:
Proc.PODS’2004, Paris, France. ACM Press, (2004) 189–200.

13. Gottlob, G., Koch, C.: Monadic Datalog and the Expressive Power of Languages for
Web Information Extraction. In: Journal of the ACM, Vol.51, No.1 (2004) 74–113

14. Kushmerick, N., Thomas, B.: Adaptive Information Extraction: Core Technologies
for Information Agents, In: Intelligent Information Agents R&D in Europe: An
AgentLink perspective (Klusch, Bergamaschi, Edwards & Petta, eds.). LNCS 2586,
Springer-Verlag (2003).

15. Laender, A.H.F., Ribeiro-Neto, B., Silva, A.S., Teixeira., J.S.: A Brief Survey of
Web Data Extraction Tools. In: SIGMOD Record, Vol.31, No.2, ACM Press (2002)
84–93.

Logic Wrappers and XSLT Transformations for Tuples Extraction 191

16. Laender, A.H.F., Ribeiro-Neto, B., Silva, A.S.: DEByE - Data Extraction By Ex-
ample. In: Data & Knowledge Engineering Vol.40, No.2, (2002) 121–154.

17. Oxygen XML Editor. http://www.oxygenxml.com/.
18. Quinlan, J. R., Cameron-Jones, R. M.: Induction of Logic Programs: FOIL and

Related Systems, New Generation Computing, 13, (1995) 287–312.
19. Thomas, B.: Token-Templates and Logic Programs for Intelligent Web Search.

Intelligent Information Systems. Special Issue: Methodologies for Intelligent Infor-
mation Systems, 14(2/3) (2000) 241–261.

20. Xiao, L., Wissmann, D., Brown, M., Jablonski, S.: Information Extraction from
HTML: Combining XML and Standard Techniques fro IE from the Web. In: Monos-
tori, L., Vancza, J., Ali, M. (eds.): Proc. IEA/AIE 2001. LNAI 2070, Springer-
Verlag (2001) 165–174.

A XSLT Code of the Sample Wrapper

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="html">

<result>
<xsl:apply-templates mode="selclass" select="//*/*/preceding-sibling::*[1]/
*[last()]/span/node()"/>

</result>
</xsl:template>
<xsl:template match="node()" mode="selclass">

<xsl:variable name="var_class"> <xsl:value-of select="normalize-space(.)"/>
</xsl:variable>
<xsl:apply-templates mode="selname" select="parent::*/parent::*/parent::*/
following-sibling::*[1]/parent::*/*/*/preceding-sibling::*[1][last()]/
//*/*/text()">
<xsl:with-param name="var_class" select="$var_class"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="node()" mode="selname">

<xsl:param name="var_class"/>
<xsl:variable name="var_name"> <xsl:value-of select="normalize-space(.)"/>
</xsl:variable>
<xsl:apply-templates mode="display" select="parent::*/parent::*/parent::*/parent::*/
parent::*/following-sibling::*[1]/*/*/*/*/text()">
<xsl:with-param name="var_class" select="$var_class"/>
<xsl:with-param name="var_name" select="$var_name"/>

</xsl:apply-templates>
</xsl:template>
<xsl:template match="node()" mode="display">

<xsl:param name="var_class"/>
<xsl:param name="var_name"/>
<xsl:variable name="var_value"> <xsl:value-of select="normalize-space(.)"/>
</xsl:variable>
<triple>
<xsl:attribute name="class"> <xsl:value-of select="$var_class"/>
</xsl:attribute>
<xsl:attribute name="name"> <xsl:value-of select="$var_name"/>
</xsl:attribute>
<xsl:attribute name="value"> <xsl:value-of select="$var_value"/>
</xsl:attribute>

</triple>
</xsl:template>

</xsl:stylesheet>

Approximate Subtree Identification
in Heterogeneous XML Documents Collections

Ismael Sanz1, Marco Mesiti2, Giovanna Guerrini3, and Rafael Berlanga Llavori1

1 Universitat Jaume I, Castellón, Spain
{berlanga,Ismael.Sanz}@uji.es

2 Università di Milano, Italy
mesiti@dico.unimi.it

3 Università di Pisa, Italy
guerrini@di.unipi.it

Abstract. Due to the heterogeneous nature of XML data for internet
applications exact matching of queries is often inadequate. The need
arises to quickly identify subtrees of XML documents in a collection
that are similar to a given pattern. In this paper we discuss different
similarity measures between a pattern and subtrees of documents in the
collection. An efficient algorithm for the identification of document sub-
trees, approximately conforming to the pattern, by indexing structures
is then introduced.

1 Introduction

The importance of tree-modeled data has spectacularly grown with the emer-
gence of semistructured and XML-based databases. Nowadays, interoperabil-
ity between systems is achieved through the interchange of XML files, which
can represent a great variety of information resources: semi-structured objects,
database schemas, concept taxonomies, ontologies, etc. As their underlying data
structures use to be tree based, there is a great interest in designing mechanisms
for retrieving subtrees according to user requests. In the case of heterogeneous
XML collections, these mechanisms must also be approximate, that is, they must
retrieve document subtrees that best fit the user requests.

Document heterogeneity poses several challenges to these retrieval systems.
Firstly, they must face the problem of dealing with vocabulary discrepancies in
the element names (e.g., synonymy, polysemy, etc.). Two elements should match
also when their tags are similar relying on a given Thesaurus. Secondly, they
must deal with the structural heterogeneity produced by the different DTDs or
Schemas behind the stored XML documents. The common assumption of simply
weakening the father-children relationships (e.g., the address element can be
a child or a descendant of the person element) is not enough. They should
consider the possibility that the father-children relationship is inverted (e.g.,
the person element is a child/descendant of the address element) or that the
two elements appear as siblings. Moreover, as schemas can also include optional
and complex components, structural heterogeneity can appear even for a single

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 192–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximate Subtree Identification 193

schema collection. For these reasons, a user query could be answered by a set of
subtrees presenting different structures as well as slight variations in their labels.

In this paper, we stress the structure and tag heterogeneity of XML document
collections that can lead to search a very large amount of documents exhibiting
weak similarity to a given pattern and we propose an approach for identifying the
portions of documents that are similar to the pattern. A pattern is an abstract
representation of a user request whose structural constraints are not taken into
account in identifying the portions of the target documents in which the nodes
of the pattern appear. The structural similarity between the pattern and the
identified portions of the target is evaluated as a second step, allowing to rank
the identified portions and producing the result.

The proposed approach is thus highly flexible and allows one to choose the
desired structural and tag constraints to be taken into account. The problem is
however how to perform the first step efficiently, that is, how to efficiently identify
fragments, i.e. portions of the target containing labels similar to those of the
pattern, without relying on strict structural constraints. Our approach employs
an ad-hoc data structure, an inverted index of the target and a pattern index
extracted on the fly from the inverted index relying on the pattern labels. By the
inverted index, nodes in the target with labels similar to those of the pattern
are identified and organized in the levels in which they appear in the target.
Fragments are generated by considering the ancestor-descendant relationship
among such vertices. Moreover, identified fragments are combined in regions,
allowing for the occurrence of nodes with labels not appearing in the pattern,
if the region shows a higher structural similarity with the pattern than the
fragments it is originated from. However, some heuristics are needed to avoid
considering all the possible ways of merging fragments into regions and for the
efficient computation of similarity.

In the paper, we formally define the notions of fragments and regions and
propose the algorithms allowing their identification, relying on our pattern index
structure. The use in the approach of different structural similarity functions
taking into account different structural constraints (e.g. ancestor-descendant and
sibling order) is discussed. The practical applicability of the approach is finally
demonstrated by providing experimental results. The contribution of the paper
can thus be summarized as follows: (i) characterization of different similarity
measures between a pattern and regions in a collection of heterogeneous tree
structured data; (ii) specification of an approach for the efficient identification of
regions by specifically tailored indexing structures; (iii) realization of a prototype
and experimental validation of the approach.

The remainder of the paper is organized as follows. Section 2 formally in-
troduces the notions of pattern, target, fragments, and regions the approach
relies on. Section 3 is devoted to discussing different approaches to measure the
similarity between the pattern and a region identified in the target. Section 4
discusses how to efficiently identify fragments and regions. Section 5 presents
experimental results while Section 6 compares our approach with related work.
Finally, Section 7 concludes the paper.

194 Ismael Sanz et al.

Table 1. Notations

Symbol Meaning

root(T) The root of T
V(T) The set of vertices of T (i.e., V)
|V |,|T | The cardinality of V(T)
label(T) The label associated with the root of T
label(v),label(V) The label associated with a node v and the nodes in V
P(v) The parent of vertex v
desc(v) The set of descendants of v (desc(v) = {u|(v, u) ∈ E∗})
level(T) The depth of T
level(v) The level in which v appears in T
pre(v),post(v) The pre/post-order traversal rank of v
nca(v, u) The nearest common ancestor of v and u
Dist(v, u) The number of vertices from v to u in a pre-order traversal
d(v),dmax d(v) = Dist(root(T), v), dmax = maxv∈V(T)d(v)

2 Pattern, Target, Fragment and Region Trees

Trees. Following standard notations, a tree T is a pair (V, E), where V is a finite
set of vertices (root(T) ∈ V is the tree root) and E is a binary relation on V
that satisfies the following conditions: (i) the root has no parent; (ii) every node
of the tree except the root has exactly one parent; (iii) all nodes are reachable
via edges from the root, i.e. (root(T), v) ∈ E∗ for all nodes in V (E∗ is the
Klein closure of E). u is the parent of v if an edge (u, v) belongs to E. A node
labelling function label assigns to each node in V a label in a set L. Given a
tree T = (V, E), Table 1 reports functions/symbols used throughout the paper.
In using the notations, the tree T is not explicitly reported whenever it is clear
from the context. Otherwise, it is marked as a subscript of the operator.

Document order is determined by a pre-order traversal of the document
tree [1]. In a pre-order traversal, a tree node v is visited and assigned its pre-
order rank pre(v) before its children are recursively traversed from left to right.
A post-order traversal is the dual of the pre-order traversal: a node v is assigned
its post-order rank post(v) after all its children have been traversed from left
to right. Each node v is thus coupled with a triple (pre(v), post(v), level(v)) as
shown in Figure 1(a). For the sake of clarity, node triples are reported in the
figure only when they are relevant for the discussion. The distance Dist(v, u) be-
tween two vertices u, v in the tree is specified as the number of vertices traversed
moving from v to u in the pre-order traversal.

Pre- and post- ranking can be used to efficiently characterize the descendants
u of v. A node v is a descendant of u, v ∈ desc(u), iff pre(v) < pre(u)∧post(u) <
post(v). Given a tree T = (V, E) and two nodes u, v ∈ V , the nearest common
ancestor of u and v, nca(u, v), is the common ancestor of u and v whose distance
to u (and to v) is smaller than the distance to any other common ancestor. Note
that nca(u, v) = nca(v, u) and nca(u, v) = v if u is a descendant of v.

Two labels in a tree are similar if they are identical, or synonyms relying on
a given Thesaurus, or syntactically similar relying on a string edit function [2].

Approximate Subtree Identification 195

(a) (b) (c) (d)

Fig. 1. (a) Pre/Post order rank, a matching fragment with a different order (b), missing
levels (c), and missing elements (d)

Let l1, l2 be two labels, l1 � l2 iff: (1) l1 = l2 or (2) l1 is a synonym of l2, or
(3) l1 and l2 are syntactically similar. Given a label l and a set of labels L, we
introduce the operator similarly belongs, ∝: l ∝ L iff ∃n ∈ L s.t. l � n.

Pattern and Target Trees. A pattern is a tree representing a collection of
navigational expressions on the target tree (e.g., Xpath expressions in XML
documents) or simply a set of labels for which a “preference” is specified on the
hierarchical or sibling order in which such labels should occur in the target.

Example 1. Consider the pattern in Figure 1(a). Possible matches are reported
in Figure 1(b,c,d). The matching tree in Figure 1(b) contains similar labels but
at different positions, whereas the one in Figure 1(c) contains similar labels but
at different levels. Finally, the matching tree in Figure 1(d) presents a missing
element and both the elements appear at different levels. ©

The target is a set of heterogeneous documents in a source. The target is
conveniently represented as a tree whose root is labelled db and whose subele-
ments are the documents of the source. This representation relies on the common
model adopted by native XML databases (e.g., eXist, Xindice) and simplifies the
adopted notations. A target is shown in Figure 2(a).

Definition 1. (Target). Let {T1, . . . , Tn} be a collection of trees, where Ti =
(Vi, Ei), 1 ≤ i ≤ n. A target is a tree T = (V, E) such that:

– V = ∪n
i=1Vi ∪ {r}, and r �∈ ∪n

i=1Vi,
– E = ∪n

i=1Ei ∪ {(r, root(Ti)), 1 ≤ i ≤ n},
– label(r) = db. �

Fragment and Region Trees. The basic building blocks of matchings in our
approach are fragments. Given a pattern P and a target T , a fragment F is a
subtree of T , in which only nodes with labels similar to those in P are considered.
Two vertices u, v belong to the same fragment F for a pattern P, iff their labels
as well as the label of their common ancestor similarly belong to the labels of
the pattern. A fragment should belong to a single document of the target.

Definition 2. (Fragment Node Set). A fragment node set of a target T with
respect to a pattern P is one of the maximal subsets V of V(T) for which
root(T) �∈ V and ∀u, v ∈ V, label(u), label(v), label(nca(u, v)) ∝ label(V(P)). �

196 Ismael Sanz et al.

(a)

b

d c

(b)

db

b f h

c d

e f

b e

c d

b d

e e

f

(c)

Fig. 2. (a) A target, (b) a pattern, and in bold (c) the corresponding fragments

The tree structure of each fragment is derived from the ancestor-descendant
relationship existing among vertices in the target.

Definition 3. (Fragment Set). Let FNP (T) be the collection of fragment node
sets of target T with respect to a pattern P . Every set of vertices VF ∈ FNP (T)
defines a fragment as the tree F = (VF , EF) such that:

1. For each v ∈ VF , nca(root(F), v) = root(F);
2. (u, v) ∈ EF if u is an ancestor of v in T , and there is no vertex w ∈ VF ,

w �= u, v such that w ∈ desc(u) and v ∈ desc(w). �

Example 2. Consider the pattern in Figure 2(b) and the target in Figure 2(a).
The corresponding five fragments are shown in bold in Figure 2(c). ©

Starting from fragments, regions are introduced as combinations of fragments
rooted at the nearest common ancestor in the target. Two fragments can be
merged in a region only if they belong to the same document. In other words,
the common root of the two fragments is not the db node of the source.

Example 3. Consider as tree T the tree rooted at node (6, 10, 1) in Figure 2(a).
Its left subtree contains elements b and c, whereas its right subtree contains
element d. T could have a higher similarity with the pattern tree in Figure 2(b)
than its left or right subtrees. Therefore, the need arises of combining fragments
in regions to return subtrees with higher similarities. ©

Definition 4. (Regions). Let FP (T) be the set of fragments btw a pattern P
and a target T . The corresponding set of regions RP (T) is defined as follows.

– FP (T) ⊆ RP (T);
– For each F = (VF , EF) ∈ FP (T) and for each R = (VR, ER) ∈ RP (T) s.t.

label(nca(root(F), root(R))) �= db, S = (VS , ES) ∈ RP (T), where:
• root(S) = nca(root(F), root(R)),
• VS = VF ∪ VR ∪ {root(S)},
• ES = EF ∪ ER ∪ {(root(S), root(F)), (root(S), root(R))}. �

Approximate Subtree Identification 197

Fig. 3. Identification of different mappings

Figure 3 contains the three regions R1, R2, R3 obtained from the fragments
in Figure 2(c). This definition of regions allows one to identify as regions all
possible combinations of fragments in a document of the target. This number
can be exponential in the number of fragments. In Section 4.2 we will discuss
the locality principle to reduce the number of regions to consider.

3 Similarity of a Region w.r.t. a Pattern

In this section we present an approach for measuring the similarity between a
pattern and a region. We first identify the possible matches between the vertices
in the pattern and the vertices in the region having similar labels. Then, the hi-
erarchical structure of nodes is taken into account to choose, among the possible
matches, those that are structurally more similar.

3.1 Mapping Between a Pattern and a Region

A mapping between a pattern and a region is a relationship among their ele-
ments that takes the tags used in the documents into account. Our definition
differs from the mapping definition proposed by other authors ([3, 4]). Since our
focus is on heterogeneous structured data, we do not consider the hierarchical
organization of the pattern and the region in the definition of the mapping. We
only require that the element labels are similar.

Definition 5. (Mapping M). Let P be a pattern, and R a region subtree of a
target T . A mapping M is a partial injective function between the vertices of P
and those of R such that ∀xp ∈ V(P), M(xp) �=⊥⇒ label(xp) � label(M(xp)).�
Example 4. Figure 3 reports the pattern P in the center and the three regions,
R1, R2, R3, obtained from the pattern in Figure 2(a). Dashed lines represent the
mappings among the vertices of the pattern and of each region. ©

Several mappings can be determined between a pattern and a region thus
measures are required to evaluate the “goodness” of a mapping. The similarity
between a pattern and a region depends on the similarity between the ver-
tices having similar labels in the two structures. Possible similarity measures
Sim(xp, xr) between pairs of vertices will be introduced in next section.

198 Ismael Sanz et al.

Definition 6. (Evaluation of a Mapping M). Let M be a mapping between a
pattern P and a region R. The evaluation of M is:

Eval(M) =

∑
xp∈V(P)s.t.M(xp) 	=⊥ Sim(xp, M(xp))

max(|V(P)|, |V(R)|) �

Once the evaluation of mappings is computed, we define the similarity be-
tween a pattern and a region as the maximal evaluation so obtained.

Definition 7. (Similarity between a Pattern and a Region). Let M be the set
of mappings between a pattern P and a region R. Their similarity is defined as:

Sim(P, R) = maxM∈MEval(M) �

3.2 Similarity Between Matching Vertices

In this section we present three approaches for computing the similarity between
a pair of matching vertices. In the first approach their similarity is one just
because we have identified a match in the region. This definition of similarity
does not take the structures of the pattern and of the region into account, but
just the occurrence of a match. In the second approach, we consider the level at
which xp and M(xp) appear in the pattern and region structure, respectively.
Whenever they appear in the same level, their similarity is equal to the similarity
computed by the first approach. Otherwise, their similarity linearly decreases as
the number of levels of difference increases. Since two vertices can be in the same
level, but not in the same position, a third approach is introduced. Relying on
the pre-order traversal of the pattern and the region, the similarity is computed
by taking the distance of vertices xp and M(xp) with respect to their roots
into account. Thus, in this case, the similarity is the highest only when the two
vertices are in the same position in the pattern/region.

Definition 8. (Similarity between Matching Vertices). Let P be a pattern, R be
a region in a target T , xp ∈ V(P), and xr = M(xp). The similarity Sim(xp, xr)
can be computed as follows:

1. Match-based similarity: SimM (xp, xr) = 1;

2. Level-based similarity: SimL(xp, xr) = 1 − |levelP (xp)−levelR(xr)|
max(level(P),level(R)) ;

3. Distance-based similarity: SimD(xp, xr) = 1 − |dP (xp)−dR(xr)|
max(dmax

P ,dmax
R) . �

Example 5. Let xp be the vertex tagged d in the pattern P in Figure 3 and
x1

r , x
2
r, x

3
r the corresponding vertices in the regions R1, R2, R3. Table 2(a) reports

the similarity of xp to the corresponding vertices in the three regions. Since in
each region a vertex tagged d appears, the match-based similarity is always 1.
The level-based similarity is 1 both for region R1 and R2 because the vertex
tagged d in that regions appears at the same level it appears in the pattern. By

Approximate Subtree Identification 199

Table 2. (a) Similarity of matching vertices (b) Similarity of a pattern with regions

(a)

SimM SimL SimD

x1
r 1 1 2

3

x2
r 1 1 2

3

x3
r 1 2

3
1
5

(b)

SimM SimL SimD

R1 1 1
1+ 2

3+ 2
3

3
= 7

9

R2
2
3

1+ 1
2

3
= 1

2

2
3 + 2

3
3

= 4
9

R3
3
5

3· 23
5

= 2
5

4
5+ 1

5+1

5
= 2

5

contrast, the level-based similarity between xp and x3
r is 2

3 because x3
r is at the

third level while xp is at the second level (thus one level of difference) and the
maximal number of levels in P and R3 is 3 (1− 1

3). The distance-based similarity
between xp and x1

r and x2
r is the same because in regions R1 and R2 vertex d

has distance 3 while in the pattern it has distance 2. Moreover, the maximal
distance in the pattern/region is the same (3). Things are different for region
R3. Indeed, vertex d has distance 5 (which is the maximal) whereas the distance
in the pattern is 1. Their distance-based similarity is thus 1 − 5−1

5 .
Table 2(b) reports the similarity of P with each region. ©

Proposition 1. SimM ,SimL are order-irrelevant. SimD is order-relevant. �

In the previous definition the context of the two vertices is not taken into
account. The “context” is formed by vertices in the neighborhood of xp and xr

that also match. Such vertices can be sibling, ancestor, or descendant vertices
of xp and xr. Correction factors can be used to tune the similarity obtained by
the previous similarity functions. For space constraints we do not present such
factors even if they have already been included in our implementation.

4 Fragment and Region Construction

In this section we present an approach for the construction of regions in a target.
The first step is to identify fragments F in the target T that satisfy Definition
3. A peculiarity of fragments is that the labels in the path from root(F) and
root(T) do not appear in the pattern P . Thus fragments are disjoint subtrees
of T . Then, we merge fragments in regions only when the similarity between
P and the generated region is greater than the similarity of P with each single
fragment. Thus, regions in the target are single fragments or combination of
regions with fragments. The identification of the fragments in the target, their
merging in regions, and the evaluation of similarity are efficiency performed by
exploiting indexing structures.

4.1 Construction of Fragments

Inverted Index for a Target. Starting from the labels label(T) of a target
T , the set is normalized with respect to � obtaining NL(T) = label(T)/�.

200 Ismael Sanz et al.

(a) (b)

Fig. 4. (a) Inverted index, (b) pattern index

Each label l ∈ NL(T) is associated with the list of vertices labeled by l or a
similar label, ordered relying on the pre-order rank. For each v ∈ V(T), the
list contains the 4-tuple (pre(v), post(v), level(v),P(v)). Figure 4(a) depicts the
inverted index for the target in Figure 2(a). For the sake of graphical readability,
the parent of each vertex is not represented (only a · is reported).

Pattern Index. Given a pattern P , for every node v in P , all occurrences
of nodes u in the target tree such that label(v) � label(u) are retrieved, and
organized level by level in a pattern index. The number of levels of the index
depends on the the levels in T in which vertices occur with labels similar to
those in the patter. For each level, vertices are ordered according to the pre-
order rank. Figure 4(b) contains the pattern index for the pattern in Figure 2(b)
evaluated on the target in Figure 2(a).

Identification of Fragments from the Pattern Index. Once the pattern
index is generated, the fragments are generated through a visit of the structure
and the application of the desc function. Each node v in the first level of the
pattern index is the root of a fragment because, considering the way we construct
the pattern index, no other vertices can be the ancestor of v. Possible descendants
of v can be identified in the underlying levels. Given a generic level l of the
pattern index, a vertex v can be a root of a fragment iff for none of the vertices
u in previous levels, v is a descendant of u. If v is a descendant of a set of vertices
U , v can be considered the child of the vertex u ∈ U s.t. Dist(v, u) is minimal.

The developed algorithm visits each vertex in the pattern index only once by
marking in each level the vertices already included in a fragment. Its complexity
is thus linearly proportional to the number of vertices in the pattern index. Figure
5 illustrates fragments F1, . . . , F5 obtained from the pattern index of Figure 4.

Proposition 2. Let P be a pattern and T be a target. Let K be the maximal size
of a level in the pattern index for P . The complexity of fragment construction is
O(K · |label(P)| · |NL(T)|). �

Approximate Subtree Identification 201

Fig. 5. Construction of fragments and regions

4.2 Construction of Regions

Two fragments should be merged in a single region when, relying on the adopted
similarity function, the similarity of the pattern with the region is higher than
the similarity with the individual fragments.

Whenever a document in the target is quite big and the number of fragments
is high, the regions that should be checked can grow exponentially. To avoid such
a situation we exploit the following locality principle: merging fragments together
or merging fragments to regions makes sense only when the fragments/regions
are close. Indeed, as the size of a region tends to be equal to the size of the
document, the similarity decreases.

In order to meet such locality principle we evaluate regions obtained by
merging adjacent fragments. Operatively, we start from a pair of fragments F, G
obtained for a pattern P whose roots have the lowest pre-order rank and identify
their common ancestor v. If v is the root of the target, the two fragments cannot
be merged. If v is a vertex of the document, the similarity Sim(P, R) is compared
with Sim(P, F) and Sim(P, G). If Sim(P, R) is greater than Sim(P, F) and
Sim(P, G), F and G are removed and only R is kept. Otherwise, F is kept
separate and we try to merge G with the right adjacent fragment.

Example 6. Considering the running example we try to generate regions starting
from the fragments in Figure 5. Since the common ancestor between F1 and F2

is the root of the target, the two fragments cannot be merged. Since the common
ancestor between F2 and F3 is a node of the same document, region Ra in Figure
5 is generated. Since the similarity of P with Ra is higher than its similarity
with F2 and F3, Ra is kept and F2, F3 removed. Then, we try to merge region
Ra with F4, but their common ancestor is the root of the target, thus Ra is kept
the merging of F4 and F5 is evaluated. The region Rb obtained from F4 and F5

has an higher similarity than the fragments, thus Rb is kept and F4 and F5 are
removed. At the end of the process the identified regions are {F1, Ra, Rb}. ©

We wish to remark that the construction of regions is quite fast because
the target should not be explicitly accessed. All the required information are
contained in the inverted indexes. Moreover, thanks to our locality principle the
number of regions to check is proportional to the number of fragments. Finally,
the regions obtained through our process do not present all the vertices occurring

202 Ismael Sanz et al.

Fig. 6. A screenshot of the GUI prototype on the ASSAM dataset

in the target but only those necessary for the computation of similarity. The
evaluation of vertices appearing in the region but not in the pattern is computed
through the pre/post order rank of each node.

Example 7. Consider the region R3 in Figure 3 and the corresponding represen-
tation Rb in Figure 5. Vertex e is not explicitly present in Rb. However, its lack
can be computed by considering the levels of vertex f and vertex d. ©

5 Prototype and Experimental Results

We have developed a prototype of the system, including a indexer module and
a query tool written in Python using the Berkeley DB library. A GTK-based
graphical user interface is also available; Figure 6 shows a screenshot. Several
aspects of the system have been studied: its performance with respect to the
dimension of the dataset, its behavior with respect to structural variations, and
its effectiveness in a real dataset.

Performance. Two synthetic datasets and test patterns have been developed
with different characteristics: Dataset 1 is designed to contain just a few match-
ing results, embedded in a large number of don’t-care nodes (around 7500 rele-
vant elements out of 107 elements). Dataset 2 has a high proportion of relevant
elements (3×105 out of 5×105). Moreover, to check the performance of pattern
identification for a range of dataset sizes, smaller collections have been extracted
from our datasets. The characteristics of each dataset are summarized in Fig-
ure 7. Results in Figure 8 show that performance is linearly dependent on the
size of the result, and don’t-care nodes are effectively discarded.

Effect of Structural Distortions. The second aspect we have evaluated is the
effect of structural variations in fragments. In order to test this, we have gener-
ated another synthetic dataset, in which we have embedded potential matches of

Approximate Subtree Identification 203

1 2 3 4 5 6 7 8 9 10

Subcollection

El
em

en
ts

0e
+0

0
4e

+0
6

8e
+0

6

(a)

1 2 3 4 5

Subcollection

El
em

en
ts

0e
+0

0
2e

+0
5

4e
+0

5

(b)

Fig. 7. (a) Total number of elements in each subcollection extracted from Dataset 1
(b) Total number of elements (dark) and number of relevant elements (light) in each
subcollection extracted from synthetic Dataset 2

0 2000 4000 6000

0.
2

0.
4

0.
6

0.
8

1.
0

Nodes in result set

Q
ue

ry
 ti

m
e

(s
)

(a)

0 50000 150000 250000

0
10

20
30

40
50

60

Nodes in result set

Q
ue

ry
 ti

m
e(

s)

(b)

Fig. 8. Execution time in Dataset 1 (left) and Dataset 2 (right)

2 4 6 8 10

0.
6

0.
8

1.
0

1.
2

1.
4

Nodes added

Av
er

ag
e

sim
ila

rit
y

(a)

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

Nodes removed

Av
er

ag
e

sim
ila

rit
y

(b)

Fig. 9. Change in similarity with the addition and removal of nodes in regions

a 15-element test pattern with controlled distortions of the following kinds: (1)
addition of n random nodes; (2) deletion of n random nodes; (3) switching the
order of nodes in the same level, with a given probability; (4) switching parent
and child nodes, with a given probability.

Results in Figure 9 show that added don’t-care nodes are ignored by the
system, while, predictably, removing relevant nodes in the target does have an
effect in the average relevance of results. The results for switching nodes in the
same level and for interchanging parent and child nodes are similar to those for
nodes addition: fragments with these distortions are successfully retrieved.

Evaluation on the ASSAM Dataset. Preliminar experiments have been con-
ducted on the ASSAM dataset http://moguntia.ucd.ie/repository/datasets/,
a collection of heterogeneous schemas derived from Web Service descriptions.
The original OWL-S schema specifications have been transformed in XML.

Figure 10 shows some sample patterns. The quality of the answers has been
evaluated using the traditional information retrieval measures, namely: precision,

204 Ismael Sanz et al.

Weather

Conditions Forecast Place

Pressure Temperature Wind Station City

Zip

(a) P1

Stock

Quote

Symbol Price Change Open High Low

(b) P3

Postal_Address

Street State Country Zip

(c) P2

Fig. 10. Sample patterns searched for in the ASSAM dataset

Table 3. Results for the ASSAM datasets

Query MinSim Prec. Recall F1

P1 0.2 1 0.75 0.86
P2 0.15 0.29 0.7 0.41
P3 0.2 1 0.8 0.89

recall and the F1 measure. A threshold MinSim has been considered to discard
outliers. AMinSim(P) denotes the results whose SimL similarity is greater than
MinSim. Table 3 shows the results. The first column indicates the pattern, and
the second column indicates the similarity threshold used for the answer set.
While keeping in mind that these are preliminar tests using a simple, generic
distance measure, the results seem encouraging. The low F1 value for pattern 2
is due to the presence of some of the pattern tags in rather different contexts
in the dataset; in a more realistic application, this should be solved by using a
more suitable similarity measure.

6 Related Work

In the last decade, there has been a great interest in the tree embedding (or tree
inclusion) problem and its application to semi-structured and XML-databases.
Classes of tree inclusion problems are analyzed in [5], providing solutions for the
ordered and unordered cases of all of them. The computational cost of the diverse
tree-matching primitives varies widely. Simple ordered XPath-like matching has
linear complexity, while the unordered version of tree embedding is NP-complete.
Flexible and semiflexible matchings have also been proposed in [6] allowing a
path in the pattern to match with a path in the target where nodesw appear in
a different order. Ranked tree-matching approaches have been proposed as well
in the same spirit of Information Retrieval (IR) approaches, where approximate

Approximate Subtree Identification 205

answers are ranked on their matching scores. In these approaches, instead of
generating all candidate subtrees, the algorithms return a ranked list of “good
enough” matches. In [7] a dynamic programming algorithm for ranking query
results according to a cost function is proposed. In [8] a data pruning algorithm
is proposed where intermediate query results are filtered dynamically during
evaluation process. ATreeGrep [9] uses as basis an exact matching algorithm,
but allowing a fixed number of “differences” in the result.

As these approaches, ours also returns a ranked list of “good enough” sub-
tree matches. However, our approach is highly flexible because it allows choosing
the most appropriate structural similarity measures according to the application
semantics. All the considered ranked approaches, indeed, enforce at least the
ancestor-descendant relationship in pattern retrieval. Moreover, our approach
also includes approximate label matching, which allows dealing with heteroge-
neous tag vocabularies. The proposed tool can thus be used in a wide range of
tree-data based applications.

The retrieval of XML documents has also been investigated in the IR area [10].
These approaches mainly focus on the textual part of XML documents, so
that the XML structure is used to guide user queries, and to improve the re-
trieval effectiveness of content indexes. However, current INEX evaluation col-
lections present little heterogeneity in both the tags and structures
http://inex.is.informatik.uni-duisburg.de/2005/. In the future, the combina-
tion of content-based IR techniques with the method proposed in this paper will
allow us to extend the range of applications to large text-rich collections with
many variations in tag names, structures and content.

Finally, some specific structural similarity measures have been proposed in
the areas of Schema Matching [11] and more recently Ontology Alignment. In the
former tree/graph-matching techniques allow determining which target schema
portions can be mapped to the source ones. In this context, node matching de-
pends on datatypes and domain constraints. However, schemas use to present
simple structures that seldom exceed three depth levels (relation-attribute-type).
In the latter, the problem consists in finding out which concepts of a target on-
tology can be associated to concepts of the source ontology, relying on neigh-
borhood and cardinality constraints. However, there are few proposals to state
useful tree-based similarity measures that can help this process.

7 Conclusions and Future Work

In this paper we have developed an approach for the identification of subtrees
similar to a given pattern in a collection of highly heterogeneous tree structured
documents. In this context, the hierarchical structure of the pattern cannot be
employed for the identification of the target subtrees but only for their ranking.
Peculiarities of our approach are the support for tag similarity relying on a
Thesaurus, the use of indexing structures to improve the performance of the
retrieval, and a prototype of the system.

As future work we plan to compare different similarity measures in order
to identify those more adequate depending on the application context and the

206 Ismael Sanz et al.

heterogeneity of the considered data. Such measures can be collected in a frame-
work of functions that a user can select, compose, and apply depending on her
needs. Moreover we plan to consider more sophisticated patterns in which fur-
ther constraints on vertices and edges can be stated. For instance, an element or
a portion of the pattern could be requested to mandatorily appear in the target
regions, or the difference between the levels in which two elements appear could
be constrained by fixing a threshold. The constraints should then be considered
in the similarity evaluation. Finally, we wish to consider subtree identification
in a collection of heterogeneous XML Schemas. In this context, the proposed
approach should be tailored to the typical schema constraints (e.g., optionality
and repeatability of elements, groups, types).

References

1. Grust, T.: Accelerating XPath Location Steps. In: ACM SIGMOD International
Conference on Management of Data. (2002) 109–120

2. Wagner, R.A., Fischer, M.J.: The String-to-string Correction Problem. Journal of
the ACM 21 (1974) 168–173

3. Nierman, A., Jagadish, H.V.: Evaluating Structural Similarity in XML Documents.
In: 5th International Workshop on the Web and Databases. (2002) 61–66

4. Buneman, P., Davidson, S.B., Fernandez, M.F., Suciu, D.: Adding Structure to
Unstructured Data. In: 6th International Conference on Database Theory. Volume
1186 of LNCS. (1997) 336–350

5. Kilpeläinen, P.: Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, Dept. of Computer Science, University of Helsinki (1992)

6. Kanza, Y., Sagiv, Y.: Flexible Queries Over Semistructured Data. In: 20th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
(2001)

7. Schlieder, T., Naumann, F.: Approximate Tree Embedding for Querying XML
Data. In: ACM SIGIR Workshop On XML and Information Retrieval. (2000)

8. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: 8th Inter-
national Conference on Extending Database Technology. Volume 2287 of LNCS.
(2002) 496–513

9. Shasha, D., Wang, J.T.L., Shan, H., Zhang, K.: ATreeGrep: Approximate Searching
in Unordered Trees. In: 14th International Conference on Scientific and Statistical
Database Management. (2002) 89–98

10. Luk, R.W., Leong, H., Dillon, T.S., Chan, A.T., Croft, W.B., Allen, J.: A Survey
in Indexing and Searching XML Documents. Journal of the American Society for
Information Science and Technology 53 (2002) 415–438

11. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. The VLDB Journal 10 (2001) 334–350

A Framework for XML-Based Integration
of Data, Visualization and Analysis

in a Biomedical Domain

Nathan Bales, James Brinkley, E. Sally Lee, Shobhit Mathur,
Christopher Re, and Dan Suciu

University of Washington

Abstract. Biomedical data are becoming increasingly complex and het-
erogeneous in nature. The data are stored in distributed information
systems, using a variety of data models, and are processed by increas-
ingly more complex tools that analyze and visualize them. We present in
this paper our framework for integrating biomedical research data and
tools into a unique Web front end. Our framework is applied to the Uni-
versity of Washington’s Human Brain Project. Specifically, we present
solutions to four integration tasks: definition of complex mappings from
relational sources to XML, distributed XQuery processing, generation of
heterogeneous output formats, and the integration of heterogeneous data
visualization and analysis tools.

1 Introduction

Modern biomedical data have an increasingly complex and heterogeneous na-
ture, and are generated by collaborative yet distributed environments. For both
technical and sociological reasons these complex data will often be stored, not
in centralized repositories, but in distributed information systems implemented
under a variety of data models. Similarly, as the data becomes more complex,
the tools to analyze and visualize them also become more complex, making it
difficult for individual users to install and maintain them.

The problem we are addressing is how to build a uniform Web interface that
(a) gives users integrated access to distributed data sources, (b) allows users to
formulate complex queries over the data without necessarily being competent in
a query language, (c) allows access to existing visualization tools which do not
need to be installed on the local workstation, and (d) allows control of existing
data analysis tools, both for data generation, and processing of query results.

Our specific application is the integration of data sources containing multi-
modality and heterogenous data describing language organization in the brain,
known as the University of Washington’s Human Brain Project [7]. The Web
front end is targeted towards sophisticated and demanding users (neuroscience
researchers). We examine in this paper the components that are needed to per-
form such a data integration task, and give a critical assessment of the available
XML tools for doing that.

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 207–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

208 Nathan Bales et al.

We have identified a few data management problems that need to be ad-
dressed in order to achieve integration: complex mappings from relational sources
to XML, distributed XQuery processing, graphical XQuery interfaces, genera-
tion of heterogeneous output formats, and integration of data visualization and
analysis tools. The main contribution in this paper is to describe our framework
for achieving the integration of data, queries, visualization, and analysis tools.
Specifically, we make the following contributions:

Complex Relational-to-XML Mapping In our experience, writing complex
mappings from relational data to XML data was one of the most labor inten-
sive tasks. We propose a simple extension to XQuery that greatly simplifies
the task of writing complex mappings.

Distributed XQuery We identify several weaknesses of the mediator model for
data integration, and propose an alternative, based on a distributed query
language. It consists of a simple extension to XQuery, called XQueryD [28],
which allows users to distribute computations across sites.

Heterogeneous Output Formats Users want to map the data into a variety
of formats, either for direct visualization, or in order to upload to other data
processing tools (spreadsheets, statistical analysis tools, etc). We describe a
simple interface to achieve that.

Heterogeneous Visualization Tools We propose an approach for integrating
multiple data visualization tools, allowing their outputs to be incorporated
into query answers.

2 Application Description

The driving application for this work is the University of Washington Integrated
Brain Project, the goal of which is to develop methods for managing, sharing, in-
tegrating and visualizing complex, heterogeneous and multi-modality data about
the human brain, in the hope of gaining a greater understanding of brain func-
tion than could be achieved with a single modality alone [7]. This project is
part of the national Human Brain Project (HBP) [21], whose long-term goal is
to develop interlinked information systems to manage the exploding amount of
data that is being accumulated in neuroscience research.

Within the UW HBP the primary data are acquired in order to understand
language organization in the brain. Because each type of data is complex, we
have developed and are continuously developing independent tools for managing
each type, with the belief that each such tool will be useful to other researchers
with similar types of data, and with the aim of integrating the separate tools,
along with external tools, in a web-based data integration system that relies on
XML as the medium of data exchange.

The web-based integration system we are developing is called XBrain [35,
36]. The components that this system seeks to integrate include data sources,
visualization tools and analysis tools.

A Framework for XML-Based Integration 209

2.1 Data Sources

We describe here three of the data sources in XBrain, which illustrate data stored
in three different data models: relational, ontology, and XML.
A Relational Database: CSM (Cortical Stimulation Mapping). This is a
patient-oriented relational database stored in MySQL, which records data ob-
tained at the time of neurosurgery for epilepsy. The data primarily represent the
cortical locations of language processing in the brain, detected by noting errors
made by the patient during electrical stimulation of those areas. The database
also contains the file locations of image volumes, 3-D brain models, and other
data needed in order to reconstruct a model of the brain from MRI images, and
to use that model as a basis for calculating the locations of the language sites.
Data are entered by means of a web-based application [20], but only minimal
browse-like queries were supported by the legacy application. The database has
36 tables containing 103 patients, and is 8MB in size.
An Ontology: FMA (Foundational Model of Anatomy). This ontology is the
product of a separate, major research project conducted over more than ten
years at the University of Washington [30]. The FMA is a large semantic network
containing over 70,000 concepts representing most of the structures in the body,
and 1.2 million relationships, such as part-of, is-a, etc. The FMA relates
to the CSM database through the names of anatomical brain regions where
the stimulation sites are located: e.g. FMA could be used to find neighboring,
contained, or containing regions of specific stimulation sites in CSM. The FMA
ontology is stored and managed in Protege1, which is a general purpose ontology
managing system, and does not support a query language. A separate project [27]
built a query interface to FMA, called OQAFMA, which supports queries written
in StruQL [15], a query language specifically designed for graphs.
An XML File: IM (Image Manager). As part of an anatomy teaching project
we have developed a tool for organizing teaching images [5]. Each image has
associated with it one or more annotation sets, consisting of one or more anno-
tations. An annotation consists of a closed polygon specified by a sequence of
image coordinates on the image and an anatomical name describing that region.
As in the CSM database, the names are taken from the FMA. In the original
project the data is stored in a relational database. For the purpose of integrating
it in XBrain we converted it into a single XML document, because it is infre-
quently updated because it has a natural recursive structure. To query it, we
use the Galax [13] XQuery interpretor.

2.2 Visualization Tools

Many tools for Web-based visualization and interaction with both 2-D and 3-D
images have been developed, in our lab and elsewhere. For example, we have
developed interactive tools for 2-D images [6], and tools for 3-D visualization of
CSM and other functional language data mapped onto a 3-D model of a patient
1 http://protege.stanford.edu/

210 Nathan Bales et al.

or population brain [26]. These tools are being integrated as part of the XBrain
project. While each tool is designed to display a single image at a time, in XBrain
we allow users to integrate images generated by several visualization tools with
the data returned by queries.

2.3 Analysis Tools

Finally, users are sophisticated, and they generally develop or use various analysis
tools to generate the data that are entered into the various data sources, or to
further process the results of a query. An example tool for the UW HBP is
the Visualization Brain Mapper (VBM) [19], which accepts a specification file
generated from the CSM database, then creates a mapping of stimulation sites
onto a generated 3-D model. A second example is our X-Batch program [18]
which provides a plugin to a popular functional image analysis program while
transparently writing to a backend database. These tools are being integrated
into XBrain, by having queries generate appropriate data formats for them.

2.4 The Problem

The UW HBP data sources and tools illustrate the increasingly complex and het-
erogenous nature of modern biomedical data, as well as the increasingly collab-
orative yet distributed environment in which they are generated. These complex
data are stored, not in a centralized repository, but in distributed information
systems implemented under a variety of data models. The tools to analyze and
visualize them are also quite complex, making it difficult for individual users to
install and maintain them. Thus, the problem we are addressing is how to build a
uniform Web interface that (a) gives users integrated access to distributed data
sources, (b) allows users to formulate complex queries over the data without
necessarily being competent in a query language, (c) allows access to existing
visualization tools which do not necessarily need to be installed on the local
workstation, and (d) allows control of existing data analysis tools, both for data
generation, and processing of query results. XBrain is our proposed framework
for addressing these problems.

3 The XBrain Integration Architecture

Our architecture is shown in Fig. 1. All sources store data in their native format
and have to map the data to XML when exported to the query processor. Most
mapped sources accept XQuery over their data, with one exception: OQAFMA
accepts StruQL queries, because the rich structure of the ontology describing all
of human anatomy requires a richer language than XQuery for recursive path
traversals in the ontology graph. The data from all sources are integrated by a
module supporting a distributed extension of the XQuery language (XQueryD).
This module sends queries to the local sources and integrates the resulting XML
data fragments. The resulting XML query answer can be presented to the user

A Framework for XML-Based Integration 211

Fig. 1. The XBrain Integration Architecture.

in one of multiple formats: as a plain XML file, as a CSV (Comma Separated
Values) file, or a nested HTML file. In the latter case, the image anchors embed-
ded in the XML file are interpreted by calling the appropriate image generation
Webservices, and the resulting HTML pages together with complex images is
presented to the user. The user inputs queries expressed in XQueryD through a
JSP page. We describe the specific data management tasks next.

4 Specific Data Management Tasks

4.1 Mappings to XML

We mapped the relational CSM database to XML using SilkRoute [11, 35]. To
define the map, one needs to write an XQuery program that maps the entire
relational database to a virtual XML document, called the public view. Users
query this view using XQuery, which SilkRoute translates to SQL, then converts
the answers back to XML. For example, the user query below finds the names
of all structures over all patients, in which a CSM error of type 2 (semantic
paraphasia) occurred at least once in one patient:

<results>
{for $trial in PublicView("Scrubbed.pv")/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return $trial/stimsite/name()

}
</results>

212 Nathan Bales et al.

ExprSingle ::= TblExpr | ... (* all expressions in XQuery remain here *)

TblExpr ::= NameClause WhereClause? OmitClause? RenameClause? ReturnClause?

NameClause ::= "table " TblName (" as " <NCName>)?
OmitClause ::= "omit " ColName (", " ColName)*
RenameClause ::= "rename " ColName as <NCName> (", " ColName as <NCName>)*
ReturnClause ::= "return " EnclosedExpr

TblName ::= <NCName>
ColName ::= <NCName>
FunctionCall ::= <QName "("> (ExprSingle ("," ExprSingle)*)? ")" ("limit" IntegerLiteral)?

Fig. 2. The Grammar for RXQuery.

Here PublicView indicates the file containing the public view definition (a large
XQuery). SilkRoute translates the query automatically into a complex SQL
statement:

SELECT stimsite.name
FROM trial, csm, . . ., stimsite
WHERE term.type = ’CSM error code’ AND abbrev = ‘2’ AND . . .

Writing the public view was a major task. For XBrain, it had 583 lines of
XQuery code, which was repetitive, boring to write, and error prone. We needed
a more efficient tool to write such mappings, in order to easily extend XBrain to
other sources. For that, we developed a simple extension to XQuery that allows
the easy specification of complex mappings from relational data to XML.

RXQuery: A Language for Mapping Relations to XML. Our new lan-
guage allows users to concisely specify complex mappings from relational data-
bases to XML such that (1) default mappings are done automatically, by using
the relational database schema, and (2) the user can override the defaults and has
the full power of XQuery. The grammar is shown in Fig. 2. It extends the XQuery
syntax with seven new productions, by adding “table expressions”, TblExpr to
the types of expressions in the language. The RXQuery preprocessor takes as
input a relational database schema and an RXQuery expression and generates
an XQuery expression that represents a public view.

Example 1. We illustrate RXQuery with three examples, shown in Fig. 3. In
all of them we use a simple relational database schema consisting for the two
relations below, which are a tiny, highly simplified fragment of CSM:

patient(pid, name, dob, address)
surgery(sid, pid, date, surgeon)

Consider Q1 in Fig. 3 and its translation to XQuery. By default, every column
in the relational schema is mapped into an XML element with the same name.
Here CanonicalView() is a SilkRoute function that represents the canonical
view of the relational database.

A Framework for XML-Based Integration 213

RXQuery Translation to XQuery

Q1 table patient for $Patient in CanonicalView()/patient
return
<patient>

<pid> { $Patient/pid/text() } </pid>
<name> { $Patient/name/text() } </name>
<dob> { $Patient/dob/text() } </dob>
<address> { $Patient/address/text() } </address>

</patient>

Q2 table patient
omit name
rename dob as @date-of-birth

where $Patient/dob/text() < 1950
return

<age>
{ 2005 - $Patient/dob/text() }

</age>

for $Patient in CanonicalView()/patient
where $Patient/dob/text() < 1950
return
<patient date-of-birth = ‘‘$Patient/dob/text()’’>

<pid> { $Patient/pid/text() } </pid>
<address> { $Patient/address/text() } </address>
<age> { 2005 - $Patient/dob/text() } </age>

</patient>

Q3 table patient
return

table surgery omit pid
where $Patient/pid/text() =
$Surgery/pid/text()

for $Patient in CanonicalView()/patient
return
<patient>

<pid> { $Patient/pid/text() } </pid>
<name> { $Patient/name/text() } </name>
<dob> { $Patient/dob/text() } </dob>
<address> { $Patient/address/text() } </address>
{ for $Surgery in CanonicalView()/surgery

where $Patient/pid/text() = $Surgery/pid/text()
return <surgery>

<sid> $Surgery/sid/text() </sid>
<date> $Surgery/date/text() </date>
<surgeon> $Surgery/surgeon/text()
</surgeon>

</surgery>
</patient>

Fig. 3. Examples of RXQuery and their translations to XQuery.

Query Q2 illustrates the omit and the rename keywords that omit and/or
rename some of these attributes, and the where and the return clauses that
allow the user to restrict which rows in the table are to be exported in XML
and to add more subelements to each row. In Q2, the name column is omitted,
the dob column is exported as the @date-of-birth attribute, rather than the
default dob element, and an additional element age is computed for each row.

RXQuery is especially powerful when specifying complex, nested public views,
which is the typical case in practice. Q3 is a very simple illustration of this power.
Here, the nested subquery is a simple table expression, which is expanded au-
tomatically by the preprocessor into a complex subquery.

In addition to the features illustrated in the example, RXQuery includes
functions, which we have found to be important in specifying complex map-
pings, since parts of the relational database need to be included several times in
the XML document. The limit n clause (see Fig. 2) represents a limit on the
recursion depth, when the function is recursive: this allows us some limited form
recursive XML views over relational data (SilkRoute does not support recursive
XML structures).

One measure of effectiveness of RXQuery is its conciseness, since this is cor-
related to the readability and maintainability of the public views. Fig. 4 reports

214 Nathan Bales et al.

PV for CSM:

Public View Lines Words Chars
XQuery(manual) 583 1605 28582
RXQuery(w/o functions) 141 352 4753
RXQuery(w/ functions) 125 303 4159
XQuery(generated) 634 1633 34979

PV for IM:

Public View Lines Words Chars
XQuery(manual) 1383 3419 64393
RXQuery(w/o functions) 381 1178 14987
RXQuery(w/ functions) 151 427 5603
XQuery(generated) 1427 3575 66105

Fig. 4. Two examples of large public views defined in RXQuery: on the CSM database
and on the original relational version of the IM (Image Manager) database. The tables
show the original, manual definition of the public view in XQuery, the definition in
RXQuery without functions, the same with functions, and the resulting, automaticallly
generated XQuery.

the number of lines for two public views: for CSM and for the original version
of IM (which is in a relational database). The CSM public view became about
5 times smaller, shrinking from 583 lines in XQuery to 125 lines in RXQuery.
The IM public view shrank from an original XQuery with 1383 lines of code to
an RXQuery expression with only 151 lines. In both examples, the XQuery pub-
lic view generated automatically by the RXQuery preprocessor was only sightly
larger than the original manual public view.

Mapping Other Data Sources to XML. While most data sources can be
mapped to XML in a meaningful way, sometimes this is not possible. In such
cases we decided to keep the original data model, rather than massaging it to
an artificial XML structure. The Foundational Model of Anatomy (FMA) is a
rich ontology, which is best represented as a graph, not a tree. We kept its query
interface, OQAFMA, which uses StruQL as a query language and allows users
to express complex recursive navigation over the ontology graph. For example,
the StruQL query below returns all anatomical parts that contain the middle
part of the superior temporal gyrus:

WHERE Y->":NAME"->"Middle part of superior temporal gyrus",
X->"part"*->Y,
X->":NAME"->Parent

CREATE Concept(Parent);

The query computes a transitive closure of the part relationship. While the
query data model is best kept as a graph, the query answers can easily be mapped
back into XML. In our example, the answer returned by OQAFMA is:
<results> <Concept> <Ancestor>Neocortex</Ancestor> </Concept>

<Concept> <Ancestor>Telencephalon</Ancestor> </Concept>
.

</results>

Finally, native XML data are queried directly using XQuery. In our case, the
Image Manager data (IM) is stored in XML and queried using Galax [13]. The
following example finds all images annotated by the middle part of the superior
temporal gyrus:
for $image in document("image_db.xml")//image
where $image/annotation_set/image_annotation/name/text() =

"middle part of the superior temporal gyrus"
return 

A Framework for XML-Based Integration 215

ExprSingle ::= "execute at" <URL> ["xquery" { ExprSingle } | "foreign" { String }]
("handle" <VAR>:<NAME-SPACE> <EXPR>)*

Fig. 5. Grammar for XQueryD.

4.2 Distributed XQuery Processing

The standard approach to data integration is based on a mediator, an architec-
ture proposed by Gio Wiederhold [38]. With this approach, a single mediator
schema is first described over all sources, and all local sources are mapped into
the mediated schema.

We found this approach too heavy duty for our purpose, for three reasons.
First, mediators are best suited in cases when the same concept appears in
several sources, and the mediated concept is the set union of the instance of
that concept at the sources. For example, BioMediator, a mediator-based data
integration project for genetic data [32], integrates several sources that have
many overlapping concepts: e.g. most sources have a gene class, and the mediator
defines a global gene class which is the logical union of those at the local sources;
similarly, most sources have a protein concept, which the mediator also unions.
By contrast, in XBrain the concepts at the sources are largely disjoint, and
the mediated schema would trivially consist of all local schemas taken together,
making the mediator almost superfluous.

The second reason is that mediator based systems require a unique data
model for all sources, in order to be able to perform fully automatic query
translation. They also hide the schema details at sources from the user, allowing
inexperienced users to access large numbers of data sources. None of these applies
to XBrain: some sources (like FMA) are best kept in their native datamodel,
which is not XML, and our sophisticated users are quite comfortable with the
details of the source schemas.

Finally, despite fifteen years of research, there are currently no widely avail-
able, robust tools for building mediator systems.

Our approach in XBrain is different, and is based on a distributed evaluation
of XQuery. All local sources are fully exposed to the users, who formulate XQuery
expressions over them.

XQueryD: A Distributed XQuery Language. The goal is to allow users to
query multiple sources in one query. While this can already be done in XQuery,
it supports only the data shipping model (through the document() function):
it fetches all data sources to a single server, then runs the query there. This
is a major limitation for many applications, especially when some data sources
are very large, or when a data source is only a virtual XML view over some
other logical data model. For example, our CSM data source is not a real XML
document, but a virtual view over a relational database. If we materialized it,
the 8MB relational database becomes a 30MB XML document; clearly, it is
very inefficient to fetch the entire data with document(). We propose a simple
extension to XQuery that allows query shipping to be expressed in the language,

216 Nathan Bales et al.

for $image in document("image_db.xml")//image
let $region_name := execute at "http://csm.biostr.washington.edu/axis/csm.jws"

xquery { for $trial in PublicView("Scrubbed.pv")/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return $trial/stimsite/name()

},
$surrounding_regions :=

for $term in $region_name
return <term> {(execute at "http://csm.biostr.washington.edu/oqafma"

foreign {WHERE Y->":NAME"->"$term",
X->("part")*->Y,
X->":NAME"->Ancestor

CREATE Concept(Ancestor); }
)/results/Concept/text()

}
</term>

where $image/annotation_set/image_annotation/name/text() = $surrounding_regions/text()
return $image/oid/text()

Fig. 6. Example of a query in XQueryD.

in addition to data shipping. The language consists of a single new construct
added to ExprSingle, and is shown in Fig. 5

Example 2. We illustrate XQueryD with one single example. The query in Fig. 6
integrates three sources: the Image database (XML), the CSM databases (rela-
tional), and the OQAFMA database (ontology). The query starts at the image
database, and iterates over all images. The execute at command instructs the
query processor to send the subsequent query to a remote site for execution: there
are two remote queries in this example. The query returns all images are anno-
tated by an anatomical name that is part of the anatomical region surrounding
any language site with error type 2.

We initially implemented XQueryD by modifying Galax to accept the new
constructs, which was a significant development effort. Once new versions of
Galax were released, we found it difficult to keep up with Galax’ code evolu-
tion. We are currently considering implementing a translator from XQueryD to
XQuery with Webservice calls that implement the execute statements. For the
future, we argue for the need of a standard language extension of XQuery to
support distributed query processing in query shipping mode.

Discussion. There is a tradeoff between the mediator-based approach and
the distributed query approach. In XQueryD users need to know the sources’
schemas, but can formulate arbitrarily complex queries as long as these are
supported by the local source. Adding a new source has almost no cost. A medi-
ator based systems presents the user with a logically coherent mediated schema,
sparing him the specific details at each source; it can potentially scale to large
number of sources. On the other hand, users can only ask limited form of queries
supported by the mediator, typically conjunctive queries (i.e. without aggregates
or subqueries), and the cost of adding a new source is high.

A Framework for XML-Based Integration 217

4.3 Graphical Query Interface
In order to allow easy access to the integrated sources and to all data processing
tools, XBrain needs to allow users to formulate complex queries over the data
without necessarily being competent in a query language. Our current approach
is to provide the user with (a) a free form for typing XQueryD expressions, (b) a
number of predefined XQueryD expressions, which can be modified by the users
in free form, and (c) a simple interface that allows users to save query expressions
and later retrieve and modify them. This part of the system will be extended in
the future with elements of graphical query languages; there is a rich literature
on graphical query interfaces, e.g. QBE [40] and XQBE [4].

4.4 Heterogeneous Output Formats
The output of XQueryD is a single XML document describing the results of
integrating data from the different data sources. While such a document may
be useful for analysis programs or XML-savvy users, it is not the most intu-
itive. Thus, we allow users to choose alternative output formats, including both
common formats such as HTML or CSV (comma separated values for input to
Excel), and formats that are specific for an application.

In our approach, the system generates automatically an XSLT program for
each XQueryD, and for each desired output format. The XSLT program is simply
run on the query’s answer and generates the desired output format. We currently
support CSV, HTML, and some proprietary formats for image generation tools.
To generate the XSLT program, the system needs to know the structure of
the XML output, i.e. the element hierarchy and the number of occurrences of
each child, which can be *, 1, or ? (0 or 1). In an early version we computed
this structure by static analysis on the query (type inference), but we found that
code brittle and hard to maintain and are currently extracting the structure from
the XML output: the tiny performance penalty is worth the added robustness.
Figure 7 (a) shows four possible output formats for the same output data: in
XML format, in CSV format, in HTML format, and as an image.

4.5 Integration of Heterogeneous Visualization Tools
Common output transformations, such as HTML or CSV as noted in the previ-
ous section, can be part of a generic integrated application that could be applied
to many different problems. However, each biomedical application will have its
own special output requirements that may best be addrsseed by independent
visualization tools. Our approach to this problem is to create independent tools
that can run as web services callable by the XBrain application. We have exper-
imented with such services for a 2-D image visualization tool that accepts XML
output from the CSM database and generates an image showing the locations
on a 2-D sketch of the brain where specific types of language processing occur.

Such an approach may also be useful for 3-D visualization of query results,
using a server-based version of our BrainJ3D visualization tool [26]. Interactive
visualization and analysis of the results, which might include new query forma-
tion, will require alternative approaches, such as a Web Start application that
can create an XQuery for the integrated query system.

218 Nathan Bales et al.

(a)

<results>
{ for $trial in PublicView("Scrubbed.pv")

/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return

<answer>
<name>

{ $trial/stimsite/name() }
</name>
<image-anchor>

<uri>
http://csm.biostr.washington.edu/vbm

</uri>
<param>

{ $trial/stimsite/name() }
</param>
<param>

gray
</param>

</image-anchor>
</answer>

}
</results>

(b)

Fig. 7. Different query output formats (XML, CSV, HTML, and Image) (a). Query
for embedding images in XML files (b).

Our approach is as follows (we refer to Fig. 1 below). Every visualization tool
must be a Webservice and offer a common interface that accepts some tool spe-
cific input parameters and generates an image (jpeg file). The XQueryD expres-
sion returns certain subelements in the answer that are anchors to visualization
Webservices. The user has to explicitly construct these anchors, like in Fig. 7
(b), which returns a set of stimulation sites, each with an image of the brain
with the corresponding stimulation site highlighted. The answer to the query
contain elements image-anchor. When the HTML generator (see Fig. 1) trans-
lates the XML document into HTML, it processes the image anchors by calling
the appropriate Webservice with the appropriate parameters, then embeds the
resulting images in the HTML table.

5 Related Work

Distributed Query Processing. There is a rich literature on distributed
query processing and optimization; a survey is in [22]. Our syntactic approach
to distributed query is closest in spirit to the Kleisli system [39], and also re-
lated to process calculi and their application to database queries [17, 31]. Unlike
ubQL [31], we use only one communication primitive, namely the migration

A Framework for XML-Based Integration 219

operator execute, and omit channels and pipelining. A different approach to
distributed data is Active XML [1–3]. Here an XML tree may contain calls to
Webservices that return other XML fragments. Query evaluation on Active XML
naturally leads to distributed execution. XQueryD differs from Active XML in
several ways. In Active XML the data need to be modified by inserting Web-
service calls and users are unaware of the distributed nature of the data; by
contrast, in XQueryD the data do not need to be modified, while queries require
detailed knowledge of the sources and their capabilities.

Mapping Relational Data to XML. Mapping relational data to XML has
been discussed extensively [8, 12, 14, 33, 34, 37]. In addition, most of the database
vendors today offer some support for XML publishing: Oracle [10, 24], SQL
Server [25], BEA’s Liquid Data [9]. Each mapping language is proprietary, and
can only be used in conjunction with that particular product (relational database
or query engine). In addition, none offers any shortcuts to defining the mapping:
users have to write each piece of the mapping. In contrast RXQuery is more
lightweight, and is translated into XQuery, and is specifically designed to be
very concise when defining complex mappings.

Other Related Work. For XQuery processing we use the Galax, which is
described in [13]. For translating XQuery to SQL we use SilkRoute, whose ar-
chitecture is described in [11], and which we recently extended significantly to
generated optimized SQL code: the extensions and optimizations are described
in [29]. Other optimization techniques for the XQuery to SQL translation are
discussed in [23]. There is a rich literature on graphical query interfaces, start-
ing with Zloof’s QBE [40]. Recent work describes a graphical query interface to
XQuery, called XQBE, is in [4].

6 Conclusions

The high complexity in integrating today’s biomedical data has two root causes:
the fact that the data are increasingly distributed and generated by collaborative
environments, and the fact that they are processed, analyzed and visualized by
increasingly more complex tools. We have described a framework for integrating
data and tools for biomedical data, with a specific application to the University
of Washington’s Human Brain Project.

Acknowledgments

This work was funded in part by NIH Human Brain Project grant DC02310 and
Suciu was partially supported by the NSF CAREER Grant IIS-0092955, NSF
Grants IIS-0140493, IIS-0205635, and IIS-0428168, and a gift from Microsoft.

220 Nathan Bales et al.

References

1. S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and N. Preda. Lazy
query evaluation for active XML. In SIGMOD, 2004.

2. S. Abiteboul, O. Benjelloun, and T. Milo. Positive active xml. In PODS, 2004.

3. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic xml
documents with distribution and replication. In SIGMOD, pages 527–538, 2003.

4. E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design of a graphical interface
to XQuery. In Proceedings of the ACM Symposium on Applied Computing (SAC),
pages 226–231, 2003.

5. J. Brinkley, R. Jakobovits, and C. Rosse. An online image management system for
anatomy teaching. In Proc. AMIA Fall Symposium, page 983, 2002.

6. J. Brinkley, B. Wong, K. Hinshaw, and C. Rosse. Design of an anatomy information
system. Computer Graphics and Applications, 19(3):38–48, 1999. Invited paper.

7. J. F. Brinkley, L. M. Myers, J. S. Prothero, G. H. Heil, J. S. Tsuruda, K. R.
Maravilla, G. A. Ojemann, and C. Rosse. A structural information framework
for brain mapping. In Neuroinformatics: An Overview of the Human Brain
Project, pages 309–334. Mahwah, New Jersey: Lawrence Erlbaum, 1997. See also
http://sig.biostr.washington.edu/projects/brain/.

8. M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram, E. Shekita, and
S. subramanian. XPERANTO: publishing object-relational data as XML. In Pro-
ceedings of WebDB, Dallas, TX, May 2000.

9. M. J. Carey. BEA liquid data for WebLogic: XML-based enterprise information
integration. In ICDE, pages 800–803, 2004.

10. A. Eisenberg and J. Melton. SQL/XML is making good progress. SIGMOD Record,
31(2):101–108, 2002.

11. M. Fernandez, Y. Kadiyska, A. Morishima, D. Suciu, and W. Tan. SilkRoute : a
framework for publishing relational data in XML. ACM Transactions on Database
Technology, 27(4), December 2002.

12. M. Fernandez, A. Morishima, and D. Suciu. Efficient evaluation of XML middle-
ware queries. In Proceedings of ACM SIGMOD Conference on Management of
Data, Santa Barbara, 2001.

13. M. Fernandez and J. Simeon. Galax: the XQuery implementation for discriminating
hackers, 2002. available from http://db.bell-labs.com/galax/.

14. M. Fernandez, D. Suciu, and W. Tan. SilkRoute: trading between relations and
XML. In Proceedings of the WWW9, pages 723–746, Amsterdam, 2000.

15. M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. Declarative specification
of web sites with strudel. VLDB Journal, 9(1):38–55, 2000.

16. J. Funderburk, G. Kiernan, J. Shanmugasundaram, E. Shekita, and C. Wei. Tech-
nical note - XTABLES: Bridging relational technology and XML. IBM Systems
Journal, 42(3):538–, 2003.

17. P. Gardner and S. Maffeis. Modelling dynamic Web data. In Proceedings of DBPL,
pages 75–84, Potsdam, Germany, 2003.

18. X. Hertzenberg, A. Poliakov, D. Corina, G. Ojemann, and J. Brinkley. X-batch:
Embedded data management for fmri analysis. In Society for Neuroscience Annual
Meeting, page 694.21, San Diego, 2004.

19. K. Hinshaw, A. Poliakov, R. Martin, E. Moore, L. Shapiro, and J. Brinkley. Shape-
based cortical surface segmentation for visualization brain mapping. Neuroimage,
16(2):295–316, 2002.

A Framework for XML-Based Integration 221

20. R. Jakobovits, C. Rosse, and J. Brinkley. An open source toolkit for building
biomedical web applications. J Am Med Ass., 9(6):557–590, 2002.

21. S. Koslow and S. Hyman. Human brain project: A program for the new millenium.
Einstein Quarterly J. Biol. Med., 17:7–15, 2000.

22. D. Kossmann. The state of the art in distributed query processing. ACM Comput.
Surv., 32(4):422–469, 2000.

23. R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient XML-to-SQL query
translation: Where to add the intelligence? In VLDB, pages 144–155, 2004.

24. M. Krishnaprasad, Z. Liu, A. Manikutty, J. Warner, V. Arora, and S. Kotsovolos.
Query rewrite for XML in oracle XML DB. In VLDB, pages 1122–1133, 2004.

25. M. Library. Creating xml views by using annotated xsd schemas, 2005.
26. E. Moore, A. Poliakov, and J. Brinkley. Brain visualization in java3d. In Proceed-

ings, MEDINFO, page 1761, San Francisco, CA, 2004.
27. P. Mork, J. F. Brinkley, and C. Rosse. OQAFMA querying agent for the founda-

tional model of anatomy: a prototype for providing flexible and efficient access to
large semantic networks. J. Biomedical Informatics, 36(6):501–517, 2003.

28. C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In Workshop
on Information Integration on the Web (IIWeb), pages 116–121, September 2004.

29. C. Re, J. Brinkley, and D. Suciu. Efficient publishing of relational data to XML.
submitted.

30. C. Rosse and J. L. V. Mejino. A reference ontology for bioinformatics: the founda-
tional model of anatomy. Journal of Bioinformatics, 36(6):478–500, 2003.

31. A. Sahuguet and V. Tannen. ubQL, a language for programming distributed query
systems. In WebDB, pages 37–42, 2001.

32. R. Shaker, P. Mork, J. Brockenbrough, L. Donelson, and P. Tarczy-Hornoch. The
biomediator system as a tool for integrating biologic databases on the web. In
Proc. Workshop on Information Integration on the Web, held in conjunction with
VLDB, 2004.

33. J. Shanmugasundaram, , J. Kiernana, E. Shekita, C. Fan, and J. Funderburk.
Querying XML views of relational data. In Proceedings of VLDB, pages 261–270,
Rome, Italy, September 2001.

34. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh,
and B. Reinwald. Efficiently publishing relational data as XML documents. In
Proceedings of VLDB, pages 65–76, Cairo, Egypt, September 2000.

35. Z. Tang, Y. Kadiyska, H. Li, D. Suciu, and J. F. Brinkley. Dy-
namic XML-based exchange of relational data: application to the Hu-
man Brain Project. In Proceedings, Annual Fall Symposium of the Ameri-
can Medical Informatics Association, pages 649–653, Washington, D.C., 2003.
http://quad.biostr.washington.edu:8080/xbrain/index.jsp.

36. Z. Tang, Y. Kadiyska, D. Suciu, and J. Brinkley. Results visualization in the xbrain
xml interface to a relational database. In Proceedings, MEDINFO, page 1878, San
Francisco, CA, 2004.

37. I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational database system. In SIG-
MOD, May 2002.

38. G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, pages 38–49, March 1992.

39. L. Wong. The functional guts of the Kleisli query system. In Proceedings of ICFP,
pages 1–10, 2000.

40. M. M. Zloof. Query-by-example: A data base language. IBM Systems Journal,
16(4):324–343, 1977.

{ekogan,gideons,mrys,hanh,babuk}@microsoft.com

DECLARE @xvar XML

CREATE TABLE t(pk INT PRIMARY KEY, xcol XML(xsc))

CREATE PROCEDURE xproc @xparam XML(xsc)
AS SELECT xcol FROM t

−
−
−
−

SELECT
 xml_ref.value('@ISBN','NVARCHAR(20)') isbn,
 xml_ref.query('for $a in Authors/Author return
 <AuthorName>
 {data(Name/First), data(Name/Last)}
 </AuthorName>') author_name_list
FROM @x.nodes('/Book') AS tbl(xml_ref)

•

•

•

•

•

•

•

•

•

•

•

•

•

−
−
−

•

•

•

•

•

−

−

−

−

−

Author Index

Afanasiev, Loredana 144

Bales, Nathan 207
Bellahsène, Zohra 114
Brinkley, James 207
Bădică, Amelia 177
Bădică, Costin 177

Castagna, Giuseppe 1

Franceschet, Massimo 129

Guerrini, Giovanna 192

Hsu, Wynne 34
Huu, Hanh Huynh 222

Kogan, Eugene 222
Koudas, Nick 68
Krishnaswamy, Babu 222

Lee, E. Sally 207
Lee, Mong Li 34
Li, Hanyu 34
Liu, Jixue 4
Llavori, Rafael Berlanga 192
Luoma, Olli 99

Manolescu, Ioana 144
Mathur, Shobhit 207
May, Norman 162

Mesiti, Marco 192
Meuss, Holger 49
Michiels, Philippe 144
Moerkotte, Guido 162

O’Connor, Martin F. 114

Poon, Chung Keung 84

Re, Christopher 207
Roantree, Mark 114
Rys, Michael 222

Sanz, Ismael 192
Schaller, Gideon 222
Schulz, Klaus U. 49
Srivastava, Divesh 68
Suciu, Dan 207

Tang, Jian 18
Tsotras, Vassilis J. 68

Vagena, Zografoula 68
Vincent, Millist W. 4

Weigel, Felix 49

Yuen, Leo 84

Zhou, Shuigeng 18

	Frontmatter
	Invited Talk (Shared with DBPL)
	Patterns and Types for Querying XML Documents

	Constraints and Views
	Checking Functional Dependency Satisfaction in XML
	A Theoretic Framework for Answering XPath Queries Using Views

	Labeling and Path Evaluation
	A Path-Based Labeling Scheme for Efficient Structural Join
	The BIRD Numbering Scheme for XML and Tree Databases -- Deciding and Reconstructing Tree Relations Using Efficient Arithmetic Operations
	Efficient Handling of Positional Predicates Within XML Query Processing

	Indexing
	Relational Index Support for XPath Axes
	Supporting XPath Axes with Relational Databases Using a Proxy Index
	An Extended Preorder Index for Optimising XPath Expressions

	Benchmarking and Query Processing
	XPathMark: An XPath Benchmark for the XMark Generated Data
	MemBeR: A Micro-benchmark Repository for XQuery
	Main Memory Implementations for Binary Grouping

	Documents and Biometrical Applications
	Logic Wrappers and XSLT Transformations for Tuples Extraction from HTML
	Approximate Subtree Identification in Heterogeneous XML Documents Collections
	A Framework for XML-Based Integration of Data, Visualization and Analysis in a Biomedical Domain

	Industrial Session
	Optimizing Runtime XML Processing in Relational Databases

	Panel (Together with DBPL)
	Panel: {\itshape ``Whither XML, ca. 2005?''}

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

